More Than Just Words: Modeling Non-Textual Characteristics of Podcasts

Longqi Yang, Yu Wang, D. Dunne, Michael Sobolev, Mor Naaman, D. Estrin
{"title":"More Than Just Words: Modeling Non-Textual Characteristics of Podcasts","authors":"Longqi Yang, Yu Wang, D. Dunne, Michael Sobolev, Mor Naaman, D. Estrin","doi":"10.1145/3289600.3290993","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the flourishing of podcasts, a unique type of audio medium. Prior work on podcast content modeling focused on analyzing Automatic Speech Recognition outputs, which ignored vocal, musical, and conversational properties (e.g., energy, humor, and creativity) that uniquely characterize this medium. In this paper, we present an Adversarial Learning-based Podcast Representation (ALPR) that captures non-textual aspects of podcasts. Through extensive experiments on a large-scale podcast dataset (88,728 episodes from 18,433 channels), we show that (1) ALPR significantly outperforms the state-of-the-art features developed for music and speech in predicting theseriousness andenergy of podcasts, and (2) incorporating ALPR significantly improves the performance of topic-based podcast-popularity prediction. Our experiments also reveal factors that correlate with podcast popularity.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3290993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Recent years have witnessed the flourishing of podcasts, a unique type of audio medium. Prior work on podcast content modeling focused on analyzing Automatic Speech Recognition outputs, which ignored vocal, musical, and conversational properties (e.g., energy, humor, and creativity) that uniquely characterize this medium. In this paper, we present an Adversarial Learning-based Podcast Representation (ALPR) that captures non-textual aspects of podcasts. Through extensive experiments on a large-scale podcast dataset (88,728 episodes from 18,433 channels), we show that (1) ALPR significantly outperforms the state-of-the-art features developed for music and speech in predicting theseriousness andenergy of podcasts, and (2) incorporating ALPR significantly improves the performance of topic-based podcast-popularity prediction. Our experiments also reveal factors that correlate with podcast popularity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不仅仅是单词:播客的非文本特征建模
播客是一种独特的音频媒体,近年来蓬勃发展。之前关于播客内容建模的工作主要集中在分析自动语音识别输出,而忽略了这种媒体特有的声乐、音乐和会话属性(例如,能量、幽默和创造力)。在本文中,我们提出了一种基于对抗性学习的播客表示(ALPR),它可以捕获播客的非文本方面。通过大规模播客数据集(来自18433个频道的88,728集)的广泛实验,我们表明:(1)ALPR在预测播客的严重性和能量方面显著优于为音乐和语音开发的最先进特征,(2)结合ALPR显著提高了基于主题的播客流行度预测的性能。我们的实验还揭示了与播客受欢迎程度相关的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DAPA: The WSDM 2019 Workshop on Deep Matching in Practical Applications Solving the Sparsity Problem in Recommendations via Cross-Domain Item Embedding Based on Co-Clustering More Than Just Words: Modeling Non-Textual Characteristics of Podcasts Pleasant Route Suggestion based on Color and Object Rates Session details: Session 6: Networks and Social Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1