{"title":"An investigation of the effects of n-gram length in scanpath analysis for eye-tracking research","authors":"Manuele Reani, Niels Peek, C. Jay","doi":"10.1145/3204493.3204527","DOIUrl":null,"url":null,"abstract":"Scanpath analysis is a controversial and important topic in eye tracking research. Previous work has shown the value of scanpath analysis in perceptual tasks; little research has examined its utility for understanding human reasoning in complex tasks. Here, we analyze n-grams, which are continuous ordered subsequences of participants' scanpaths. In particular we studied the length of n-grams that are most appropriate for this form of analysis. We reuse datasets from previous studies of human cognition, medical diagnosis and art, systematically analyzing the frequency of n-grams of increasing length, and compare this approach with a string alignment-based method. The results show that subsequences of four or more areas of interest may not be of value for finding patterns that distinguish between two groups. The study is the first to systematically define the parameters of the length of n-gram suitable for analysis, using an approach that holds across diverse domains.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3204527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Scanpath analysis is a controversial and important topic in eye tracking research. Previous work has shown the value of scanpath analysis in perceptual tasks; little research has examined its utility for understanding human reasoning in complex tasks. Here, we analyze n-grams, which are continuous ordered subsequences of participants' scanpaths. In particular we studied the length of n-grams that are most appropriate for this form of analysis. We reuse datasets from previous studies of human cognition, medical diagnosis and art, systematically analyzing the frequency of n-grams of increasing length, and compare this approach with a string alignment-based method. The results show that subsequences of four or more areas of interest may not be of value for finding patterns that distinguish between two groups. The study is the first to systematically define the parameters of the length of n-gram suitable for analysis, using an approach that holds across diverse domains.