A Multi-Level Semantic Fusion Algorithm Based on Historical Data in Question Answering

Rui Zhao, Songyang Wu, Yi Mao, Ning Li
{"title":"A Multi-Level Semantic Fusion Algorithm Based on Historical Data in Question Answering","authors":"Rui Zhao, Songyang Wu, Yi Mao, Ning Li","doi":"10.1109/ICNISC54316.2021.00178","DOIUrl":null,"url":null,"abstract":"To solve the problem that existing machine reading comprehension models can't understand the semantics of articles and questions well, this paper proposes a multi-level semantic fusion neural network based on natural language understanding and deep learning. The model combines calculations of attentions at different levels with cross-layer fusions of historical data. Experiments on the SQuAD dataset prove that our proposed model is superior to traditional models in terms of the exact match rate and F1 value. Our model can better transmit and interpret data and enhance the performance of question answering systems.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"297 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem that existing machine reading comprehension models can't understand the semantics of articles and questions well, this paper proposes a multi-level semantic fusion neural network based on natural language understanding and deep learning. The model combines calculations of attentions at different levels with cross-layer fusions of historical data. Experiments on the SQuAD dataset prove that our proposed model is superior to traditional models in terms of the exact match rate and F1 value. Our model can better transmit and interpret data and enhance the performance of question answering systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
问答中基于历史数据的多层次语义融合算法
为了解决现有机器阅读理解模型不能很好地理解文章和问题的语义的问题,本文提出了一种基于自然语言理解和深度学习的多层次语义融合神经网络。该模型将不同层次的注意力计算与历史数据的跨层融合相结合。在SQuAD数据集上的实验证明,我们提出的模型在精确匹配率和F1值方面都优于传统模型。该模型可以更好地传输和解释数据,提高问答系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explore the Performance of Capsule Neural Network Learning Discrete Features Profiling Pumped Storage Power Station via Multi-Sequence Joint Regression Trajectory Tracking Technology for Crawler Rescue Robot Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Molecular and Structure-based Features Design and Optimization of Ultrasonic Fatigue Specimen Based on ANSYS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1