Nanocavity enhanced photon coherence of solid-state quantum emitters operating up to 30 K

A. Brash, Jake Iles-Smith
{"title":"Nanocavity enhanced photon coherence of solid-state quantum emitters operating up to 30 K","authors":"A. Brash, Jake Iles-Smith","doi":"10.1088/2633-4356/acf5c0","DOIUrl":null,"url":null,"abstract":"\n Solid-state emitters such as epitaxial quantum dots have emerged as a leading platform for efficient, on-demand sources of indistinguishable photons, a key resource for many optical quantum technologies. To maximise performance, these sources normally operate at liquid helium temperatures (~4 K), introducing significant size, weight and power requirements that can be impractical for proposed applications. Here we experimentally resolve the two distinct temperature-dependent phonon interactions that degrade indistinguishability, allowing us to demonstrate that coupling to a photonic nanocavity can greatly improve photon coherence at elevated temperatures compatible with compact cryocoolers. We derive a polaron model that fully captures the temperature-dependent influence of phonons observed in our experiments, providing predictive power to further increase the indistinguishability and operating temperature of future devices through optimised cavity parameters.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/acf5c0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state emitters such as epitaxial quantum dots have emerged as a leading platform for efficient, on-demand sources of indistinguishable photons, a key resource for many optical quantum technologies. To maximise performance, these sources normally operate at liquid helium temperatures (~4 K), introducing significant size, weight and power requirements that can be impractical for proposed applications. Here we experimentally resolve the two distinct temperature-dependent phonon interactions that degrade indistinguishability, allowing us to demonstrate that coupling to a photonic nanocavity can greatly improve photon coherence at elevated temperatures compatible with compact cryocoolers. We derive a polaron model that fully captures the temperature-dependent influence of phonons observed in our experiments, providing predictive power to further increase the indistinguishability and operating temperature of future devices through optimised cavity parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米腔增强了工作在30k以下的固态量子发射器的光子相干性
固态发射体,如外延量子点,已经成为高效的、按需的不可区分光子源的领先平台,这是许多光学量子技术的关键资源。为了最大限度地提高性能,这些源通常在液氦温度(~4 K)下工作,这就引入了巨大的尺寸、重量和功率要求,这对于拟议的应用来说是不切实际的。在这里,我们通过实验解决了两种不同的温度依赖声子相互作用,这些相互作用降低了不可区分性,使我们能够证明光子纳米腔的耦合可以极大地提高与紧凑型制冷机兼容的高温下的光子相干性。我们推导了一个极化子模型,该模型完全捕获了我们实验中观察到的声子的温度依赖影响,通过优化腔参数,为进一步提高未来设备的不可区分性和工作温度提供了预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1