A Clustering Algorithm Using Twitter User Biography

Masaki Kohana, S. Okamoto, Masaya Kaneko
{"title":"A Clustering Algorithm Using Twitter User Biography","authors":"Masaki Kohana, S. Okamoto, Masaya Kaneko","doi":"10.1109/NBiS.2013.70","DOIUrl":null,"url":null,"abstract":"Our previous work proposed a clustering algorithm to cluster research documents automatically. It used Web hit counts of AND-search on two words as a document vector. Target documents are clustered with a result of k-means clustering method, in which cosine similarity is used to calculate a distance. This paper uses this algorithm to cluster twitter users. However, the twitter users have different characteristics from the research documents. Therefore, we investigate problems of the using our algorithm for twitter users and propose some ideas to resolve it.","PeriodicalId":261268,"journal":{"name":"2013 16th International Conference on Network-Based Information Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 16th International Conference on Network-Based Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NBiS.2013.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Our previous work proposed a clustering algorithm to cluster research documents automatically. It used Web hit counts of AND-search on two words as a document vector. Target documents are clustered with a result of k-means clustering method, in which cosine similarity is used to calculate a distance. This paper uses this algorithm to cluster twitter users. However, the twitter users have different characteristics from the research documents. Therefore, we investigate problems of the using our algorithm for twitter users and propose some ideas to resolve it.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Twitter用户传记的聚类算法
我们之前的工作提出了一种自动聚类研究文献的聚类算法。它使用对两个单词进行and搜索的Web命中次数作为文档向量。使用k-means聚类方法对目标文档进行聚类,其中使用余弦相似度计算距离。本文使用该算法对twitter用户进行聚类。然而,twitter用户的特征与研究文献有所不同。因此,我们对twitter用户使用我们的算法存在的问题进行了研究,并提出了一些解决问题的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3 Tiers Storage Model for Low Throughput Off-Line Storage Implementation of Web-Based Interactive Interface as Software Execution Environment A Novel Resource Allocation Heuristic for a Power Constrained Data Center A Clustering Algorithm Using Twitter User Biography Querying MongoDB with LINQ in a Server-Side JavaScript Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1