An unsupervised approach for gait-based authentication

Guglielmo Cola, M. Avvenuti, Alessio Vecchio, Guang-Zhong Yang, Benny P. L. Lo
{"title":"An unsupervised approach for gait-based authentication","authors":"Guglielmo Cola, M. Avvenuti, Alessio Vecchio, Guang-Zhong Yang, Benny P. L. Lo","doi":"10.1109/BSN.2015.7299423","DOIUrl":null,"url":null,"abstract":"Similar to fingerprint and iris pattern, everyone's gait is unique, and gait has been proposed as a biometric feature for security applications. This paper presents a lightweight accelerometer-based technique for user authentication on smart wearable devices. Designed as an unsupervised classification approach, the proposed authentication technique can learn the user's gait pattern automatically when the user first starts wearing the device. Anomaly detection is then used to verify the device owner. The technique has been evaluated both in controlled and uncontrolled environments, with 20 and 6 healthy volunteers respectively. The Equal Error Rate (EER) in the controlled environments ranged from 5.7% (waist-mounted sensor) to 8.0% (trouser pocket). In the uncontrolled experiment, the device was put in the subject's trouser pocket, and the results were similar to the respective supervised experiment (EER=9.7%).","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Similar to fingerprint and iris pattern, everyone's gait is unique, and gait has been proposed as a biometric feature for security applications. This paper presents a lightweight accelerometer-based technique for user authentication on smart wearable devices. Designed as an unsupervised classification approach, the proposed authentication technique can learn the user's gait pattern automatically when the user first starts wearing the device. Anomaly detection is then used to verify the device owner. The technique has been evaluated both in controlled and uncontrolled environments, with 20 and 6 healthy volunteers respectively. The Equal Error Rate (EER) in the controlled environments ranged from 5.7% (waist-mounted sensor) to 8.0% (trouser pocket). In the uncontrolled experiment, the device was put in the subject's trouser pocket, and the results were similar to the respective supervised experiment (EER=9.7%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于步态的无监督认证方法
与指纹和虹膜模式类似,每个人的步态都是独一无二的,步态已被提出作为安全应用的生物特征。提出了一种基于轻量级加速度计的智能可穿戴设备用户认证技术。作为一种无监督分类方法,所提出的认证技术可以在用户首次佩戴设备时自动学习用户的步态模式。然后使用异常检测来验证设备所有者。这项技术在受控环境和非受控环境中分别对20名和6名健康志愿者进行了评估。在受控环境下的等错误率(EER)范围从5.7%(腰装传感器)到8.0%(裤兜)。在非受控实验中,装置被放置在受试者的裤兜中,结果与各自的监督实验相似(EER=9.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a smart insole for ambulatory assessment of gait Anticipatory signals in kinematics and muscle activity during functional grasp and release Piezoelectrets and their applications as wearable physiological-signal sensors and energy harvesters Automated guidance from physiological sensing to reduce thermal-work strain levels on a novel task An unsupervised approach for gait-based authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1