Adaptive sensory integrating neural network based on a Bayesian estimation method

K. Yamauchi, S. Sugiura, H. Takeuchi, N. Ishii
{"title":"Adaptive sensory integrating neural network based on a Bayesian estimation method","authors":"K. Yamauchi, S. Sugiura, H. Takeuchi, N. Ishii","doi":"10.1109/ICONIP.1999.844021","DOIUrl":null,"url":null,"abstract":"The authors present a sensory integrating neural network based on a Bayesian method. It is well known that almost all mammals recognize the outer world using several sensors such as eyes and ears. Although mammals basically integrate all sensory inputs, sometimes they ignore a part of the sensory input if the input is very noisy or contradicted from other sensory inputs. Using such adaptive selection strategy, mammals realize robust recognition in any situation. To realize the above in artificial neural networks, we construct a Bayesian method for optimizing the recognition outputs using several sets of forward network and backward network connected to each sensor. In the recognition phase, the system calculates the posterior distribution of the recognition output and the confidence parameter of each sensor, and optimizes the output and the confidence parameter to maximize the posterior distribution function. The repetition of the forward and the backward network calculation realizes the optimization process quickly. The experimental results show that the system yields appropriate recognition results while ignoring the noisy or contradictive sensory inputs by decreasing the corresponding confidence parameter.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors present a sensory integrating neural network based on a Bayesian method. It is well known that almost all mammals recognize the outer world using several sensors such as eyes and ears. Although mammals basically integrate all sensory inputs, sometimes they ignore a part of the sensory input if the input is very noisy or contradicted from other sensory inputs. Using such adaptive selection strategy, mammals realize robust recognition in any situation. To realize the above in artificial neural networks, we construct a Bayesian method for optimizing the recognition outputs using several sets of forward network and backward network connected to each sensor. In the recognition phase, the system calculates the posterior distribution of the recognition output and the confidence parameter of each sensor, and optimizes the output and the confidence parameter to maximize the posterior distribution function. The repetition of the forward and the backward network calculation realizes the optimization process quickly. The experimental results show that the system yields appropriate recognition results while ignoring the noisy or contradictive sensory inputs by decreasing the corresponding confidence parameter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯估计方法的自适应感觉积分神经网络
提出了一种基于贝叶斯方法的感觉积分神经网络。众所周知,几乎所有的哺乳动物都是用眼睛和耳朵等几种传感器来识别外部世界的。虽然哺乳动物基本上整合了所有的感觉输入,但如果输入非常嘈杂或与其他感觉输入相矛盾,它们有时会忽略一部分感觉输入。利用这种适应性选择策略,哺乳动物在任何情况下都能实现鲁棒识别。为了在人工神经网络中实现上述目标,我们构建了一个贝叶斯方法,通过连接到每个传感器的几组前向网络和后向网络来优化识别输出。在识别阶段,系统计算识别输出的后验分布和各传感器的置信度参数,并对输出和置信度参数进行优化,使后验分布函数最大化。正向和反向网络计算的重复实现了快速的优化过程。实验结果表明,通过减小相应的置信度参数,该系统在忽略有噪声或矛盾的感官输入的情况下,获得了较好的识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1