Dynamic voltage scaling with links for power optimization of interconnection networks

L. Shang, L. Peh, N. Jha
{"title":"Dynamic voltage scaling with links for power optimization of interconnection networks","authors":"L. Shang, L. Peh, N. Jha","doi":"10.1109/HPCA.2003.1183527","DOIUrl":null,"url":null,"abstract":"Originally developed to connect processors and memories in multicomputers, prior research and design of interconnection networks have focused largely on performance. As these networks get deployed in a wide range of new applications, where power is becoming a key design constraint, we need to seriously consider power efficiency in designing interconnection networks. As the demand for network bandwidth increases, communication links, already a significant consumer of power now, will take up an ever larger portion of total system power budget. In this paper we motivate the use of dynamic voltage scaling (DVS) for links, where the frequency and voltage of links are dynamically adjusted to minimize power consumption. We propose a history-based DVS policy that judiciously adjusts link frequencies and voltages based on past utilization. Our approach realizes up to 6.3/spl times/ power savings (4.6/spl times/ on average). This is accompanied by a moderate impact on performance (15.2% increase in average latency before network saturation and 2.5% reduction in throughput.) To the best of our knowledge, this is the first study that targets dynamic power optimization of interconnection networks.","PeriodicalId":150992,"journal":{"name":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"490","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2003.1183527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 490

Abstract

Originally developed to connect processors and memories in multicomputers, prior research and design of interconnection networks have focused largely on performance. As these networks get deployed in a wide range of new applications, where power is becoming a key design constraint, we need to seriously consider power efficiency in designing interconnection networks. As the demand for network bandwidth increases, communication links, already a significant consumer of power now, will take up an ever larger portion of total system power budget. In this paper we motivate the use of dynamic voltage scaling (DVS) for links, where the frequency and voltage of links are dynamically adjusted to minimize power consumption. We propose a history-based DVS policy that judiciously adjusts link frequencies and voltages based on past utilization. Our approach realizes up to 6.3/spl times/ power savings (4.6/spl times/ on average). This is accompanied by a moderate impact on performance (15.2% increase in average latency before network saturation and 2.5% reduction in throughput.) To the best of our knowledge, this is the first study that targets dynamic power optimization of interconnection networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于互联网络功率优化的链路动态电压缩放
互连网络最初是为了在多台计算机中连接处理器和存储器而开发的,但之前的研究和设计主要集中在性能上。随着这些网络在广泛的新应用中得到部署,功率正在成为一个关键的设计限制,我们需要在设计互连网络时认真考虑功率效率。随着对网络带宽需求的增加,通信链路已经是一个重要的电力消耗者,它在整个系统电力预算中所占的比例将越来越大。在本文中,我们鼓励对链路使用动态电压缩放(DVS),其中链路的频率和电压被动态调整以最小化功耗。我们提出了一个基于历史的分布式交换机策略,根据过去的利用率明智地调整链路频率和电压。我们的方法实现了高达6.3/spl次/的节能(平均4.6/spl次/)。这伴随着对性能的中等影响(网络饱和前平均延迟增加15.2%,吞吐量减少2.5%)。据我们所知,这是第一个针对互联网络动态功率优化的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic voltage scaling with links for power optimization of interconnection networks Memory system behavior of Java-based middleware Mini-threads: increasing TLP on small-scale SMT processors Performance enhancement techniques for InfiniBand/sup TM/ Architecture Deterministic clock gating for microprocessor power reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1