{"title":"Data-driven precondition inference with learned features","authors":"Saswat Padhi, Rahul Sharma, T. Millstein","doi":"10.1145/2908080.2908099","DOIUrl":null,"url":null,"abstract":"We extend the data-driven approach to inferring preconditions for code from a set of test executions. Prior work requires a fixed set of features, atomic predicates that define the search space of possible preconditions, to be specified in advance. In contrast, we introduce a technique for on-demand feature learning, which automatically expands the search space of candidate preconditions in a targeted manner as necessary. We have instantiated our approach in a tool called PIE. In addition to making precondition inference more expressive, we show how to apply our feature-learning technique to the setting of data-driven loop invariant inference. We evaluate our approach by using PIE to infer rich preconditions for black-box OCaml library functions and using our loop-invariant inference algorithm as part of an automatic program verifier for C++ programs.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107
Abstract
We extend the data-driven approach to inferring preconditions for code from a set of test executions. Prior work requires a fixed set of features, atomic predicates that define the search space of possible preconditions, to be specified in advance. In contrast, we introduce a technique for on-demand feature learning, which automatically expands the search space of candidate preconditions in a targeted manner as necessary. We have instantiated our approach in a tool called PIE. In addition to making precondition inference more expressive, we show how to apply our feature-learning technique to the setting of data-driven loop invariant inference. We evaluate our approach by using PIE to infer rich preconditions for black-box OCaml library functions and using our loop-invariant inference algorithm as part of an automatic program verifier for C++ programs.