Joint Learning with Group Relation and Individual Action

Chihiro Nakatani, Hiroaki Kawashima, N. Ukita
{"title":"Joint Learning with Group Relation and Individual Action","authors":"Chihiro Nakatani, Hiroaki Kawashima, N. Ukita","doi":"10.23919/MVA57639.2023.10215994","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for group relation learning. Different from related work in which the manual annotation of group activities is required for supervised learning, we propose group relation learning without group activity annotation through recognition of individual action that can be more easily annotated than group activities defined with complex inter-people relationships. Our method extracts features informative for recognizing the action of each person by conditioning the group relation with the location of this person. A variety of experimental results demonstrate that our method outperforms SOTA methods quantitatively and qualitatively on two public datasets.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method for group relation learning. Different from related work in which the manual annotation of group activities is required for supervised learning, we propose group relation learning without group activity annotation through recognition of individual action that can be more easily annotated than group activities defined with complex inter-people relationships. Our method extracts features informative for recognizing the action of each person by conditioning the group relation with the location of this person. A variety of experimental results demonstrate that our method outperforms SOTA methods quantitatively and qualitatively on two public datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群体关系与个体行为的共同学习
本文提出了一种群体关系学习方法。与以往需要手工标注小组活动才能进行监督学习的相关工作不同,我们提出了不需要标注小组活动的小组关系学习,通过对个体行为的识别,可以比具有复杂人际关系的小组活动更容易标注。我们的方法通过将群体关系与每个人的位置联系起来,提取信息丰富的特征来识别每个人的行为。各种实验结果表明,我们的方法在两个公共数据集上的定量和定性都优于SOTA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small Object Detection for Birds with Swin Transformer CG-based dataset generation and adversarial image conversion for deep cucumber recognition Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation Joint Learning with Group Relation and Individual Action Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1