The impact of application context on privacy and performance of keystroke authentication systems

K. Balagani, Paolo Gasti, Aaron Elliott, Azriel Richardson, M. O'Neal
{"title":"The impact of application context on privacy and performance of keystroke authentication systems","authors":"K. Balagani, Paolo Gasti, Aaron Elliott, Azriel Richardson, M. O'Neal","doi":"10.3233/JCS-171017","DOIUrl":null,"url":null,"abstract":"In this paper, we show that keystroke latencies used in continuous user authentication systems disclose application context, i.e., in which application user is entering text. Using keystroke data collected from 62 subjects, we show that an adversary can infer application context from keystroke latencies with 95.15% accuracy. To prevent leakage from keystroke latencies, and prevent exposure of application context, we develop privacy-preserving authentication protocols in the outsourced authentication model. Our protocols implement two popular matching algorithms designed for keystroke authentication, called Absolute (“A”) and Relative (“R”). With our protocols, the client reveals no information to the server during authentication, besides the authentication result. Our experiments show that these protocols are fast in practice: with 100 keystroke features, authentication was completed in about one second with the “A” protocol, and in 595 ms with the “R” protocol. Further, because the asymptotic cost of our protocols is linear, they can scale to a large number of features. On the other hand, by leveraging application context we were able to reduce HTER from 14.7% with application-agnostic templates, to as low as 5.8% with application-specific templates.","PeriodicalId":142580,"journal":{"name":"J. Comput. Secur.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JCS-171017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we show that keystroke latencies used in continuous user authentication systems disclose application context, i.e., in which application user is entering text. Using keystroke data collected from 62 subjects, we show that an adversary can infer application context from keystroke latencies with 95.15% accuracy. To prevent leakage from keystroke latencies, and prevent exposure of application context, we develop privacy-preserving authentication protocols in the outsourced authentication model. Our protocols implement two popular matching algorithms designed for keystroke authentication, called Absolute (“A”) and Relative (“R”). With our protocols, the client reveals no information to the server during authentication, besides the authentication result. Our experiments show that these protocols are fast in practice: with 100 keystroke features, authentication was completed in about one second with the “A” protocol, and in 595 ms with the “R” protocol. Further, because the asymptotic cost of our protocols is linear, they can scale to a large number of features. On the other hand, by leveraging application context we were able to reduce HTER from 14.7% with application-agnostic templates, to as low as 5.8% with application-specific templates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用程序上下文对击键认证系统的隐私和性能的影响
在本文中,我们展示了连续用户身份验证系统中使用的击键延迟揭示了应用程序上下文,即应用程序用户在其中输入文本。使用从62个对象收集的击键数据,我们表明攻击者可以从击键延迟中推断应用程序上下文,准确率为95.15%。为了防止击键延迟造成的泄漏,并防止暴露应用程序上下文,我们在外包身份验证模型中开发了保护隐私的身份验证协议。我们的协议实现了为击键认证设计的两种流行匹配算法,称为绝对(“A”)和相对(“R”)。使用我们的协议,客户端在身份验证期间除了身份验证结果外,不会向服务器透露任何信息。我们的实验表明,这些协议在实践中是快速的:使用100个击键特征,“A”协议在大约1秒内完成身份验证,使用“R”协议在595毫秒内完成身份验证。此外,由于我们的协议的渐近成本是线性的,它们可以扩展到大量的特征。另一方面,通过利用应用程序上下文,我们能够将HTER从与应用程序无关的模板的14.7%降低到与应用程序特定的模板的5.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data privacy in the Internet of Things based on anonymization: A review A mutation-based approach for the formal and automated analysis of security ceremonies StegEdge: Privacy protection of unknown sensitive attributes in edge intelligence via deception IsaNet: A framework for verifying secure data plane protocols A review on cloud security issues and solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1