A probabilistic approach to metasearching with adaptive probing

Zhenyu Liu, C. Luo, Junghoo Cho, W. Chu
{"title":"A probabilistic approach to metasearching with adaptive probing","authors":"Zhenyu Liu, C. Luo, Junghoo Cho, W. Chu","doi":"10.1109/ICDE.2004.1320026","DOIUrl":null,"url":null,"abstract":"An ever-increasing amount of valuable information is stored in Web databases, \"hidden\" behind search interfaces. To save the user's effort in manually exploring each database, metasearchers automatically select the most relevant databases to a user's query. In this paper, we focus on one of the technical challenges in metasearching, namely database selection. Past research uses a precollected summary of each database to estimate its \"relevancy\" to the query, and in many cases make incorrect database selection. In this paper, we propose two techniques: probabilistic relevancy modelling and adaptive probing. First, we model the relevancy of each database to a given query as a probabilistic distribution, derived by sampling that database. Using the probabilistic model, the user can explicitly specify a desired level of certainty for database selection. The adaptive probing technique decides which and how many databases to contact in order to satisfy the user's requirement. Our experiments on real hidden-Web databases indicate that our approach significantly improves the accuracy of database selection at the cost of a small number of database probing.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1320026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

An ever-increasing amount of valuable information is stored in Web databases, "hidden" behind search interfaces. To save the user's effort in manually exploring each database, metasearchers automatically select the most relevant databases to a user's query. In this paper, we focus on one of the technical challenges in metasearching, namely database selection. Past research uses a precollected summary of each database to estimate its "relevancy" to the query, and in many cases make incorrect database selection. In this paper, we propose two techniques: probabilistic relevancy modelling and adaptive probing. First, we model the relevancy of each database to a given query as a probabilistic distribution, derived by sampling that database. Using the probabilistic model, the user can explicitly specify a desired level of certainty for database selection. The adaptive probing technique decides which and how many databases to contact in order to satisfy the user's requirement. Our experiments on real hidden-Web databases indicate that our approach significantly improves the accuracy of database selection at the cost of a small number of database probing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应探测的元搜索概率方法
越来越多的有价值的信息被存储在Web数据库中,“隐藏”在搜索界面后面。为了节省用户手动探索每个数据库的工作量,元搜索器会自动选择与用户查询最相关的数据库。在本文中,我们关注元搜索中的一个技术挑战,即数据库选择。过去的研究使用预先收集的每个数据库的摘要来估计其与查询的“相关性”,并且在许多情况下做出了错误的数据库选择。本文提出了两种技术:概率关联建模和自适应探测。首先,我们将每个数据库与给定查询的相关性建模为概率分布,该概率分布是通过对该数据库进行抽样得出的。使用概率模型,用户可以显式地为数据库选择指定所需的确定性级别。自适应探测技术可以根据用户的需求决定与哪些数据库和多少数据库进行接触。我们在真实的隐藏web数据库上的实验表明,我们的方法以少量的数据库探测为代价,显著提高了数据库选择的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ContextMetrics/sup /spl trade//: semantic and syntactic interoperability in cross-border trading systems EShopMonitor: a Web content monitoring tool A probabilistic approach to metasearching with adaptive probing Simple, robust and highly concurrent b-trees with node deletion Substructure clustering on sequential 3d object datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1