{"title":"Modelling interference for indoor wireless systems using the FDTD method","authors":"A. Austin, M. Neve, G. Rowe","doi":"10.1109/APS.2009.5172258","DOIUrl":null,"url":null,"abstract":"A 2D TMz implementation of the Finite-Difference Time-Domain algorithm is used to model radio-wave propagation from multiple transmitter locations in an eight storey building. From the steady-state field data, the Signal-to-Interference Ratio (SIR) is calculated for down-link scenarios. One transmitter is located on each floor and two base-station configurations are examined: aligned and staggered. Vertically-aligned transmitters are found to have better SIR performance - 9% of the sectors in the aligned configuration and 23% in the staggered configuration have SIRs less than 5 dB. The central services core significantly reduces the SIR, however this effect can be alleiviated by including another set of vertically-aligned transmitters.","PeriodicalId":213759,"journal":{"name":"2009 IEEE Antennas and Propagation Society International Symposium","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2009.5172258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A 2D TMz implementation of the Finite-Difference Time-Domain algorithm is used to model radio-wave propagation from multiple transmitter locations in an eight storey building. From the steady-state field data, the Signal-to-Interference Ratio (SIR) is calculated for down-link scenarios. One transmitter is located on each floor and two base-station configurations are examined: aligned and staggered. Vertically-aligned transmitters are found to have better SIR performance - 9% of the sectors in the aligned configuration and 23% in the staggered configuration have SIRs less than 5 dB. The central services core significantly reduces the SIR, however this effect can be alleiviated by including another set of vertically-aligned transmitters.