Incremental Learning in Synthetic Aperture Radar Images Using Openmax Algorithm

A. Oveis, E. Giusti, S. Ghio, Giulio Meucci, M. Martorella
{"title":"Incremental Learning in Synthetic Aperture Radar Images Using Openmax Algorithm","authors":"A. Oveis, E. Giusti, S. Ghio, Giulio Meucci, M. Martorella","doi":"10.1109/RadarConf2351548.2023.10149627","DOIUrl":null,"url":null,"abstract":"In real-time real-world scenarios, an automatic target recognition (ATR) system may encounter new samples from unseen classes continually. Retraining a neural network by using the new and all the previous samples, whenever new data is received, imposes a considerable computational cost. Instead, incremental learning aims at learning new knowledge while preserving previous knowledge with an emphasis on computational time and storage resources. In this paper, we employ the Openmax method, which has been initially introduced for open set recognition in optical images, to assist a convolutional neural network (CNN) in incremental learning scenarios with SAR images. The new set for fine-tuning the network is constituted of the unknown samples recognized by the Openmax method together with exemplars from the old classes. Our real data analysis to validate the proposed method is performed on radar images of man-made targets from the well-known Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In real-time real-world scenarios, an automatic target recognition (ATR) system may encounter new samples from unseen classes continually. Retraining a neural network by using the new and all the previous samples, whenever new data is received, imposes a considerable computational cost. Instead, incremental learning aims at learning new knowledge while preserving previous knowledge with an emphasis on computational time and storage resources. In this paper, we employ the Openmax method, which has been initially introduced for open set recognition in optical images, to assist a convolutional neural network (CNN) in incremental learning scenarios with SAR images. The new set for fine-tuning the network is constituted of the unknown samples recognized by the Openmax method together with exemplars from the old classes. Our real data analysis to validate the proposed method is performed on radar images of man-made targets from the well-known Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Openmax算法的合成孔径雷达图像增量学习
在实时的现实世界场景中,自动目标识别(ATR)系统可能会不断地遇到来自未知类别的新样本。每当接收到新的数据时,通过使用新的和所有以前的样本来重新训练神经网络会增加相当大的计算成本。相反,增量学习旨在学习新知识的同时保留先前的知识,强调计算时间和存储资源。在本文中,我们采用Openmax方法,该方法最初用于光学图像的开放集识别,以辅助卷积神经网络(CNN)在SAR图像的增量学习场景中。新的网络微调集由Openmax方法识别的未知样本和来自旧类的样本组成。我们对来自著名的运动和静止目标获取和识别(MSTAR)数据集的人造目标的雷达图像进行了实际数据分析以验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1