The role of OLED emissive layer polarization in sub-turn-on charge accumulation

E. Pakhomenko, R. Holmes
{"title":"The role of OLED emissive layer polarization in sub-turn-on charge accumulation","authors":"E. Pakhomenko, R. Holmes","doi":"10.1117/12.2633591","DOIUrl":null,"url":null,"abstract":"Preferential alignment of molecular permanent dipole moments, known as spontaneous orientation polarization (SOP), is present in many materials employed in the active layers of organic light-emitting devices (OLEDs). This phenomenon leads to the formation of bound polarization charge, which is compensated by polaron accumulation at voltages below turn-on. While most prior work has focused on polarization in the device electron transport layer (ETL), here we examine the impact of emissive layer SOP by systematically probing polaron accumulation and exciton-polaron quenching in phosphorescent OLEDs. To gain a deeper understanding of polaron accumulation, device capacitance is systematically probed as a function of voltage across samples with polar and nonpolar emissive layers. We find that capacitance measurements can be used to track not only the number of accumulated charges, but also its location within the device active layers. This study provides an analysis framework that allows further insights on the charge accumulation process in OLEDs, thus improving our understanding of SOP in OLEDs","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Preferential alignment of molecular permanent dipole moments, known as spontaneous orientation polarization (SOP), is present in many materials employed in the active layers of organic light-emitting devices (OLEDs). This phenomenon leads to the formation of bound polarization charge, which is compensated by polaron accumulation at voltages below turn-on. While most prior work has focused on polarization in the device electron transport layer (ETL), here we examine the impact of emissive layer SOP by systematically probing polaron accumulation and exciton-polaron quenching in phosphorescent OLEDs. To gain a deeper understanding of polaron accumulation, device capacitance is systematically probed as a function of voltage across samples with polar and nonpolar emissive layers. We find that capacitance measurements can be used to track not only the number of accumulated charges, but also its location within the device active layers. This study provides an analysis framework that allows further insights on the charge accumulation process in OLEDs, thus improving our understanding of SOP in OLEDs
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OLED发射层极化在亚导通电荷积累中的作用
分子永久偶极矩的优先排列被称为自发取向极化(SOP),存在于有机发光器件(oled)有源层中使用的许多材料中。这种现象导致束缚极化电荷的形成,这是由极化子积累在电压低于导通补偿。虽然大多数先前的工作都集中在器件电子传输层(ETL)的极化上,但在这里,我们通过系统地探测磷光oled中的极化子积累和激子-极化子猝灭来研究发射层SOP的影响。为了更深入地了解极化子积累,系统地探测了器件电容作为具有极性和非极性发射层的样品之间电压的函数。我们发现电容测量不仅可以用于跟踪累积电荷的数量,还可以用于跟踪其在器件有源层中的位置。本研究提供了一个分析框架,可以进一步了解oled中的电荷积累过程,从而提高我们对oled中SOP的理解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of amylose and tailored amylose matrices for scavenging iodide Chemiluminescent detection of nucleic acids induced by peroxidase-like targeted DNA-nanomachines (PxDm) mixed with plasmonic nanoparticles Synthesis and characterization of cesium europium chloride bromide lead-free Perovskite nanocrystals Effect of reaction temperature on CsPbBr3 perovskite quantum dots with photovoltaic applications Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1