Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications

Ajay Kumar, Nivedita Pandey, Deepak Punetha, R. Saha, Samishta Choudhary, S. Chakrabarti
{"title":"Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications","authors":"Ajay Kumar, Nivedita Pandey, Deepak Punetha, R. Saha, Samishta Choudhary, S. Chakrabarti","doi":"10.1117/12.2677967","DOIUrl":null,"url":null,"abstract":"The lead-free halide-based perovskite is widely used because of its superior performance, long carrier diffusion length, narrow band emission, and tuneable bandgap. However, improvement of carrier lifetime and stability is the prime challenge for such perovskites. Therefore, reduced graphene oxide (rGO) is used as an additive material in CsSnI3 pristine perovskites to improve the optical, electronic, and structural properties. In this work, we synthesized the perovskite and rGO nanocomposite using the hot injection technique. We have performed photoluminescence (PL), ultraviolet spectroscopy (UV-Vis), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) to understand the effect of rGO in Perovskite. In PL, a peak is found at ~ 782 nm for as-synthesis perovskite and after the 1% rGO incorporation, the peak is shifted towards the higher wavelength around ~ 811 nm. In XRD, the multiple diffraction peaks for the CsSnI3 perovskite and rGO nanocomposite are observed at 27.46°, 39.41°, 48.48°, 56.93°, and 64.38°, which originated from the indexing planes of (221), (112), (540), (082), and (053), respectively. The dominant peak (221) shifts towards the higher angle (0.07°) after 5% rGO incorporation. The UV-Vis spectroscopy confirms bandgap reduction after rGO incorporation in pristine CsSnI3 perovskite. The bandgaps of 1.64 eV and 1.56 eV are calculated from Tauc’s plot for CsSnI3 and rGO/CsSnI3 nanocomposite, respectively. Therefore, the rGO incorporation in the pristine CsSnI3 perovskite demonstrates highly promising properties, which opens the gateway towards the improvement of optoelectronics device performance.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lead-free halide-based perovskite is widely used because of its superior performance, long carrier diffusion length, narrow band emission, and tuneable bandgap. However, improvement of carrier lifetime and stability is the prime challenge for such perovskites. Therefore, reduced graphene oxide (rGO) is used as an additive material in CsSnI3 pristine perovskites to improve the optical, electronic, and structural properties. In this work, we synthesized the perovskite and rGO nanocomposite using the hot injection technique. We have performed photoluminescence (PL), ultraviolet spectroscopy (UV-Vis), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) to understand the effect of rGO in Perovskite. In PL, a peak is found at ~ 782 nm for as-synthesis perovskite and after the 1% rGO incorporation, the peak is shifted towards the higher wavelength around ~ 811 nm. In XRD, the multiple diffraction peaks for the CsSnI3 perovskite and rGO nanocomposite are observed at 27.46°, 39.41°, 48.48°, 56.93°, and 64.38°, which originated from the indexing planes of (221), (112), (540), (082), and (053), respectively. The dominant peak (221) shifts towards the higher angle (0.07°) after 5% rGO incorporation. The UV-Vis spectroscopy confirms bandgap reduction after rGO incorporation in pristine CsSnI3 perovskite. The bandgaps of 1.64 eV and 1.56 eV are calculated from Tauc’s plot for CsSnI3 and rGO/CsSnI3 nanocomposite, respectively. Therefore, the rGO incorporation in the pristine CsSnI3 perovskite demonstrates highly promising properties, which opens the gateway towards the improvement of optoelectronics device performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
还原氧化石墨烯(rGO)-CsSnI3纳米复合材料:一种改善光电器件结构和光学性能的经济高效技术
无铅卤化物钙钛矿因其优越的性能、较长的载流子扩散长度、窄带发射和可调谐的带隙而被广泛应用。然而,改善载流子寿命和稳定性是这类钙钛矿的主要挑战。因此,还原氧化石墨烯(rGO)被用作CsSnI3原始钙钛矿的添加剂材料,以改善其光学、电子和结构性能。在这项工作中,我们采用热注入技术合成了钙钛矿和还原氧化石墨烯纳米复合材料。我们通过光致发光(PL),紫外光谱(UV-Vis), x射线衍射(XRD)和透射电子显微镜(TEM)来了解还原氧化石墨烯在钙钛矿中的作用。在PL中,合成钙钛矿在~ 782 nm处有一个峰,掺入1%还原氧化石墨烯后,该峰在~ 811 nm附近向更高波长偏移。在XRD上,CsSnI3钙钛矿和还原氧化石墨烯纳米复合材料的多重衍射峰分别位于27.46°、39.41°、48.48°、56.93°和64.38°,它们分别来自于(221)、(112)、(540)、(082)和(053)的标度面。5% rGO掺入后,主导峰(221)向更高角度(0.07°)偏移。紫外可见光谱证实在原始CsSnI3钙钛矿中掺入还原氧化石墨烯后带隙减小。利用Tauc图计算出CsSnI3和rGO/CsSnI3纳米复合材料的带隙分别为1.64 eV和1.56 eV。因此,在原始CsSnI3钙钛矿中加入还原氧化石墨烯显示出非常有前途的性能,这为改善光电器件性能打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of amylose and tailored amylose matrices for scavenging iodide Chemiluminescent detection of nucleic acids induced by peroxidase-like targeted DNA-nanomachines (PxDm) mixed with plasmonic nanoparticles Synthesis and characterization of cesium europium chloride bromide lead-free Perovskite nanocrystals Effect of reaction temperature on CsPbBr3 perovskite quantum dots with photovoltaic applications Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1