STIFA

Zhenfei Cao, Xu Wang, Shengcheng Yu, Yexiao Yun, Chunrong Fang
{"title":"STIFA","authors":"Zhenfei Cao, Xu Wang, Shengcheng Yu, Yexiao Yun, Chunrong Fang","doi":"10.1145/3324884.3415300","DOIUrl":null,"url":null,"abstract":"Crowdsourced mobile testing has been widely used due to its convenience and high efficiency [10]. Crowdsourced workers complete testing tasks and record results in test reports. However, the problem of duplicate reports has prevented the efficiency of crowd-sourced mobile testing from further improving. Existing crowd-sourced testing report analysis techniques usually leverage screenshots and text descriptions independently, but fail to recognize the link between these two types of information. In this paper, we present a crowdsourced mobile testing report selection tool, namely STIFA, to extract image and text feature information in reports and establish an image-text-fusion bug context. Based on text and image fusion analysis results, STIFA performs cluster analysis and report selection. To evaluate, we employed STIFA to analyze 150 reports from 2 apps. The results show that STIFA can extract, on average, 95.23% text feature information and 84.15% image feature information. Besides, STIFA reaches an accuracy of 87.64% in detecting duplicate reports. The demo can be found at https://youtu.be/Gw6ptqyQbQY.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3415300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Crowdsourced mobile testing has been widely used due to its convenience and high efficiency [10]. Crowdsourced workers complete testing tasks and record results in test reports. However, the problem of duplicate reports has prevented the efficiency of crowd-sourced mobile testing from further improving. Existing crowd-sourced testing report analysis techniques usually leverage screenshots and text descriptions independently, but fail to recognize the link between these two types of information. In this paper, we present a crowdsourced mobile testing report selection tool, namely STIFA, to extract image and text feature information in reports and establish an image-text-fusion bug context. Based on text and image fusion analysis results, STIFA performs cluster analysis and report selection. To evaluate, we employed STIFA to analyze 150 reports from 2 apps. The results show that STIFA can extract, on average, 95.23% text feature information and 84.15% image feature information. Besides, STIFA reaches an accuracy of 87.64% in detecting duplicate reports. The demo can be found at https://youtu.be/Gw6ptqyQbQY.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ImpAPTr PerfCI STIFA Prober SADT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1