{"title":"STIFA","authors":"Zhenfei Cao, Xu Wang, Shengcheng Yu, Yexiao Yun, Chunrong Fang","doi":"10.1145/3324884.3415300","DOIUrl":null,"url":null,"abstract":"Crowdsourced mobile testing has been widely used due to its convenience and high efficiency [10]. Crowdsourced workers complete testing tasks and record results in test reports. However, the problem of duplicate reports has prevented the efficiency of crowd-sourced mobile testing from further improving. Existing crowd-sourced testing report analysis techniques usually leverage screenshots and text descriptions independently, but fail to recognize the link between these two types of information. In this paper, we present a crowdsourced mobile testing report selection tool, namely STIFA, to extract image and text feature information in reports and establish an image-text-fusion bug context. Based on text and image fusion analysis results, STIFA performs cluster analysis and report selection. To evaluate, we employed STIFA to analyze 150 reports from 2 apps. The results show that STIFA can extract, on average, 95.23% text feature information and 84.15% image feature information. Besides, STIFA reaches an accuracy of 87.64% in detecting duplicate reports. The demo can be found at https://youtu.be/Gw6ptqyQbQY.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3415300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Crowdsourced mobile testing has been widely used due to its convenience and high efficiency [10]. Crowdsourced workers complete testing tasks and record results in test reports. However, the problem of duplicate reports has prevented the efficiency of crowd-sourced mobile testing from further improving. Existing crowd-sourced testing report analysis techniques usually leverage screenshots and text descriptions independently, but fail to recognize the link between these two types of information. In this paper, we present a crowdsourced mobile testing report selection tool, namely STIFA, to extract image and text feature information in reports and establish an image-text-fusion bug context. Based on text and image fusion analysis results, STIFA performs cluster analysis and report selection. To evaluate, we employed STIFA to analyze 150 reports from 2 apps. The results show that STIFA can extract, on average, 95.23% text feature information and 84.15% image feature information. Besides, STIFA reaches an accuracy of 87.64% in detecting duplicate reports. The demo can be found at https://youtu.be/Gw6ptqyQbQY.