Edge detection using adaptive thresholding and Ant Colony Optimization

O. Verma, Prerna Singhal, Sakshi Garg, D. S. Chauhan
{"title":"Edge detection using adaptive thresholding and Ant Colony Optimization","authors":"O. Verma, Prerna Singhal, Sakshi Garg, D. S. Chauhan","doi":"10.1109/WICT.2011.6141264","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for edge detection using adaptive thresholding and Ant Colony Optimization (ACO) algorithm to obtain a well-connected image edge map. Initially, the edge map of the image is obtained using adaptive thresholding. The end points obtained using adaptive threshoding are calculated and the ants are placed at these points. The movement of the ants is guided by the local variation in the pixel intensity values. The probability factor of only undetected neighboring pixels is taken into consideration while moving an ant to the next probable edge pixel. The two stopping rules are implemented to prevent the movement of ants through the pixel already detected using the adoptive thresholding. The results are qualitative analyze using Shanon's Entropy function.","PeriodicalId":178645,"journal":{"name":"2011 World Congress on Information and Communication Technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2011.6141264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, we present an approach for edge detection using adaptive thresholding and Ant Colony Optimization (ACO) algorithm to obtain a well-connected image edge map. Initially, the edge map of the image is obtained using adaptive thresholding. The end points obtained using adaptive threshoding are calculated and the ants are placed at these points. The movement of the ants is guided by the local variation in the pixel intensity values. The probability factor of only undetected neighboring pixels is taken into consideration while moving an ant to the next probable edge pixel. The two stopping rules are implemented to prevent the movement of ants through the pixel already detected using the adoptive thresholding. The results are qualitative analyze using Shanon's Entropy function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应阈值和蚁群优化的边缘检测
在本文中,我们提出了一种利用自适应阈值和蚁群优化(ACO)算法进行边缘检测的方法,以获得良好连接的图像边缘映射。首先,采用自适应阈值法获得图像的边缘映射。计算自适应阈值法得到的端点,并将蚁群放置在这些端点上。蚂蚁的运动是由像素强度值的局部变化来引导的。在将蚂蚁移动到下一个可能的边缘像素时,考虑了仅未检测到相邻像素的概率因子。这两个停止规则是为了防止蚂蚁通过使用自适应阈值检测到的像素移动。利用香农熵函数对结果进行定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud based model for senior citizens wellness management Application of genetic algorithm on quality graded networks for intelligent routing Role of ICT in the educational upliftment of women - Indian scenario Code clones in program test sequence identification An impact of ridgelet transform in handwritten recognition: A study on very large dataset of Kannada script
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1