Stochastic modeling of EEG rhythms with fractional Gaussian Noise

Mandar Karlekar, Anubha Gupta
{"title":"Stochastic modeling of EEG rhythms with fractional Gaussian Noise","authors":"Mandar Karlekar, Anubha Gupta","doi":"10.5281/ZENODO.44212","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to signal modeling for EEG signal rhythms. A new method of 3-stage DCT based multirate filterbank is proposed for the decomposition of EEG signals into brain rhythms: delta, theta, alpha, beta, and gamma rhythms. It is shown that theta, alpha, and gamma rhythms can be modeled as 1st order fractional Gaussian Noise (fGn), while the beta rhythms can be modeled as 2nd order fGn processes. These fGn processes are stationary random processes. Further, it is shown that the delta subband imbibes all the nonstationarity of EEG signals and can be modeled as a 1st order fractional Brownian motion (fBm) process. The modeling of subbands is characterized by Hurst exponent, estimated using maximum likelihood (ML) estimation method. The modeling approach has been tested on two public databases.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a novel approach to signal modeling for EEG signal rhythms. A new method of 3-stage DCT based multirate filterbank is proposed for the decomposition of EEG signals into brain rhythms: delta, theta, alpha, beta, and gamma rhythms. It is shown that theta, alpha, and gamma rhythms can be modeled as 1st order fractional Gaussian Noise (fGn), while the beta rhythms can be modeled as 2nd order fGn processes. These fGn processes are stationary random processes. Further, it is shown that the delta subband imbibes all the nonstationarity of EEG signals and can be modeled as a 1st order fractional Brownian motion (fBm) process. The modeling of subbands is characterized by Hurst exponent, estimated using maximum likelihood (ML) estimation method. The modeling approach has been tested on two public databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含分数高斯噪声的脑电图节律随机建模
提出了一种新的脑电图信号节律建模方法。提出了一种基于3级DCT的多速率滤波组方法,将脑电信号分解为δ、θ、α、β和γ节律。结果表明,θ、α和γ节律可以建模为一阶分数高斯噪声(fGn),而β节律可以建模为二阶fGn过程。这些fGn过程是平稳随机过程。进一步表明,δ子带吸收了脑电信号的所有非平稳性,并可以建模为一阶分数布朗运动(fBm)过程。子带的建模采用Hurst指数表征,使用最大似然估计方法进行估计。该建模方法已在两个公共数据库上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1