Automatic code optimization for computing the McCaskill partition functions

W. Bielecki, M. Pałkowski, M. Poliwoda
{"title":"Automatic code optimization for computing the McCaskill partition functions","authors":"W. Bielecki, M. Pałkowski, M. Poliwoda","doi":"10.15439/2022F4","DOIUrl":null,"url":null,"abstract":"In this paper, we present the application of three automatic source-to-source compilers to code implementing McCaskill’s bioinformatics algorithm. It computes probabilities of various substructures for RNA prediction. McCaskill’s algorithm is compute and data intensive and it is within dynamic programming. A corresponding programming code exposes non-uniform dependences that complicate tiling of that code. The corresponding code is represented within the polyhedral model. Its optimization is still a challenging task for optimizing compilers employing multi-threaded loop tiling. To generate optimized code, we used the popular PLuTo compiler that finds and applies affine transformations, the TRACO compiler based on calculating the transitive closure of loop dependence graphs, and the newest polyhedral tool DAPT implementing space-time tiling. An experimental study fulfilled on two multi-core machines: an AMD Epyc with 64 threads and a 2x Intel Xeon Platinum 9242 with 192 threads demonstrates considerable speedup, high locality, and scalability for various problem sizes and the number of threads of generated codes by means of space-time tiling.","PeriodicalId":254961,"journal":{"name":"2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2022F4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the application of three automatic source-to-source compilers to code implementing McCaskill’s bioinformatics algorithm. It computes probabilities of various substructures for RNA prediction. McCaskill’s algorithm is compute and data intensive and it is within dynamic programming. A corresponding programming code exposes non-uniform dependences that complicate tiling of that code. The corresponding code is represented within the polyhedral model. Its optimization is still a challenging task for optimizing compilers employing multi-threaded loop tiling. To generate optimized code, we used the popular PLuTo compiler that finds and applies affine transformations, the TRACO compiler based on calculating the transitive closure of loop dependence graphs, and the newest polyhedral tool DAPT implementing space-time tiling. An experimental study fulfilled on two multi-core machines: an AMD Epyc with 64 threads and a 2x Intel Xeon Platinum 9242 with 192 threads demonstrates considerable speedup, high locality, and scalability for various problem sizes and the number of threads of generated codes by means of space-time tiling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动代码优化计算麦卡斯基尔分区函数
在本文中,我们提出了三个自动源到源编译器的应用,以实现麦卡斯基尔的生物信息学算法的代码。它计算各种亚结构的概率用于RNA预测。麦卡斯基尔的算法是计算和数据密集型的,它属于动态规划。相应的编程代码暴露了不统一的依赖关系,使代码的平铺变得复杂。相应的代码在多面体模型中表示。对于使用多线程循环平铺的编译器来说,它的优化仍然是一项具有挑战性的任务。为了生成优化的代码,我们使用了查找和应用仿射变换的流行PLuTo编译器,基于计算循环依赖图的传递闭包的TRACO编译器,以及实现时空平铺的最新多面体工具DAPT。在两台多核机器上完成的实验研究:一台64线程的AMD Epyc和一台2倍的Intel Xeon Platinum 9242(192线程),通过时空平铺的方式,对各种问题大小和线程数的生成代码进行了显著的加速、高局部性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personality Prediction from Social Media Posts using Text Embedding and Statistical Features Representing and Managing Experiential Knowledge with Decisional DNA and its Drimos® Extension Secure Onboarding and Key Management in Federated IoT Environments Automatic code optimization for computing the McCaskill partition functions Encrypting JPEG-compressed Images by Substituting Huffman Code Words
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1