Automated MAP-MRF EM labelling for volume determination in PET

Hugh Gribben, P. Miller, Hongbin Wang, K. Carson, A. Hounsell, A. Zatari
{"title":"Automated MAP-MRF EM labelling for volume determination in PET","authors":"Hugh Gribben, P. Miller, Hongbin Wang, K. Carson, A. Hounsell, A. Zatari","doi":"10.1109/ISBI.2008.4540917","DOIUrl":null,"url":null,"abstract":"An automated, unsupervised Maximum a Posterior - Markov Random Field Expectation Maximisation (MAP- MRF EM) Labelling technique, based upon a Bayesian framework, for volume of interest (VOI) determination in Positron Emission Tomography (PET) imagery is proposed. The segmentation technique incorporates MAP-MRF modelling into a mixture modelling approach using the EM algorithm, to consider both the structural and statistical nature of the data. The performance of the algorithm has been assessed on a set of PET phantom data. Investigations revealed improvements over a simple statistical approach using the EM algorithm, and improvements over a MAP- MRF approach, using the output from the EM algorithm as an initial estimate. Improvement is also shown over a standard semi-automated thresholding method, and an automated Fuzzy Hidden Markov Chain (FHMC) approach; particularly for smaller object volume determination, as the FHMC method loses some spatial correlation. A deblurring pre-processing stage was also found to provide improved results.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

An automated, unsupervised Maximum a Posterior - Markov Random Field Expectation Maximisation (MAP- MRF EM) Labelling technique, based upon a Bayesian framework, for volume of interest (VOI) determination in Positron Emission Tomography (PET) imagery is proposed. The segmentation technique incorporates MAP-MRF modelling into a mixture modelling approach using the EM algorithm, to consider both the structural and statistical nature of the data. The performance of the algorithm has been assessed on a set of PET phantom data. Investigations revealed improvements over a simple statistical approach using the EM algorithm, and improvements over a MAP- MRF approach, using the output from the EM algorithm as an initial estimate. Improvement is also shown over a standard semi-automated thresholding method, and an automated Fuzzy Hidden Markov Chain (FHMC) approach; particularly for smaller object volume determination, as the FHMC method loses some spatial correlation. A deblurring pre-processing stage was also found to provide improved results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于PET体积测定的自动MAP-MRF EM标记
提出了一种基于贝叶斯框架的自动无监督最大后验马尔可夫随机场期望最大化(MAP- MRF EM)标记技术,用于正电子发射断层扫描(PET)图像中感兴趣体积(VOI)的确定。分割技术将MAP-MRF建模结合到使用EM算法的混合建模方法中,以考虑数据的结构和统计性质。在一组PET幻像数据上对该算法的性能进行了评估。研究表明,使用EM算法的简单统计方法有所改进,使用EM算法的输出作为初始估计的MAP- MRF方法有所改进。在标准的半自动阈值法和自动模糊隐马尔可夫链(FHMC)方法的基础上进行了改进;特别是对于较小的物体体积确定,因为FHMC方法失去了一些空间相关性。一个去模糊预处理阶段也被发现提供改善的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1