Dynamic Extension of ASR Lexicon Using Wikipedia Data

Badr M. Abdullah, I. Illina, D. Fohr
{"title":"Dynamic Extension of ASR Lexicon Using Wikipedia Data","authors":"Badr M. Abdullah, I. Illina, D. Fohr","doi":"10.1109/SLT.2018.8639592","DOIUrl":null,"url":null,"abstract":"Despite recent progress in developing Large Vocabulary Continuous Speech Recognition Systems (LVCSR), these systems suffer from-Of-Vocabulary words (OOV). In many cases, the OOV words are Proper Nouns (PNs). The correct recognition of PNs is essential for broadcast news, audio indexing, etc. In this article, we address the problem of OOV PN retrieval in the framework of broadcast news LVCSR. We focused on dynamic (document dependent) extension of LVCSR lexicon. To retrieve relevant OOV PNs, we propose to use a very large multipurpose text corpus: Wikipedia. This corpus contains a huge number of PNs. These PNs are grouped in semantically similar classes using word embedding. We use a two-step approach: first, we select OOV PN pertinent classes with a multi-class Deep Neural Network (DNN). Secondly, we rank the OOVs of the selected classes. The experiments on French broadcast news show that the Bi-GRU model outperforms other studied models. Speech recognition experiments demonstrate the effectiveness of the proposed methodology.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite recent progress in developing Large Vocabulary Continuous Speech Recognition Systems (LVCSR), these systems suffer from-Of-Vocabulary words (OOV). In many cases, the OOV words are Proper Nouns (PNs). The correct recognition of PNs is essential for broadcast news, audio indexing, etc. In this article, we address the problem of OOV PN retrieval in the framework of broadcast news LVCSR. We focused on dynamic (document dependent) extension of LVCSR lexicon. To retrieve relevant OOV PNs, we propose to use a very large multipurpose text corpus: Wikipedia. This corpus contains a huge number of PNs. These PNs are grouped in semantically similar classes using word embedding. We use a two-step approach: first, we select OOV PN pertinent classes with a multi-class Deep Neural Network (DNN). Secondly, we rank the OOVs of the selected classes. The experiments on French broadcast news show that the Bi-GRU model outperforms other studied models. Speech recognition experiments demonstrate the effectiveness of the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用维基百科数据的ASR词典动态扩展
尽管近年来在开发大词汇量连续语音识别系统(LVCSR)方面取得了进展,但这些系统受到词汇量的影响(OOV)。在许多情况下,OOV单词是专有名词(pn)。正确识别pn对广播新闻、音频索引等工作至关重要。本文研究了广播新闻LVCSR框架下的OOV PN检索问题。我们重点研究了LVCSR词典的动态扩展(依赖于文档)。为了检索相关的OOV PNs,我们建议使用一个非常大的多用途文本语料库:维基百科。这个语料库包含大量的pn。使用词嵌入将这些pn分组为语义相似的类。我们使用两步方法:首先,我们使用多类深度神经网络(DNN)选择OOV PN相关类。其次,我们对所选类的oov进行排序。对法国广播新闻的实验表明,Bi-GRU模型优于其他已研究的模型。语音识别实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence Teacher-Student Training of Acoustic Models for Automatic Free Speaking Language Assessment Leveraging Sequence-to-Sequence Speech Synthesis for Enhancing Acoustic-to-Word Speech Recognition Dynamic Extension of ASR Lexicon Using Wikipedia Data Detection and Calibration of Whisper for Speaker Recognition Out-of-Domain Slot Value Detection for Spoken Dialogue Systems with Context Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1