{"title":"Minimum square distance thresholding method applying gray-gradient co-occurrence matrix","authors":"Hong Zhang, Qiang Zhi, Fan Yang","doi":"10.3233/KES-200040","DOIUrl":null,"url":null,"abstract":"In image thresholding segmentation, gray level of pixels is the basic element to describe images. Besides, the gradient information of pixels is also a key feature to represent image space distribution. Therefore, the co-occurrence probability of gray and gradient of pixels is an effective information to describe image. In this paper, gray-gradient asymmetrical co-occurrence matrix is constructed, uniformity probability of image region is produced, and a minimum square distance criterion function based on gray-gradient co-occurrence matrix is proposed to measure the deviation between original and binary images. Comparing with gray-gray asymmetrical co-occurrence matrix and relative entropy-based symmetrical co-occurrence matrix method, the proposed method can obtain more complete segmentation results, especially for small-size object extraction. The peak signal to noise ratio probability also shows the better segmentation performance of our proposed method.","PeriodicalId":210048,"journal":{"name":"Int. J. Knowl. Based Intell. Eng. Syst.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Based Intell. Eng. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/KES-200040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In image thresholding segmentation, gray level of pixels is the basic element to describe images. Besides, the gradient information of pixels is also a key feature to represent image space distribution. Therefore, the co-occurrence probability of gray and gradient of pixels is an effective information to describe image. In this paper, gray-gradient asymmetrical co-occurrence matrix is constructed, uniformity probability of image region is produced, and a minimum square distance criterion function based on gray-gradient co-occurrence matrix is proposed to measure the deviation between original and binary images. Comparing with gray-gray asymmetrical co-occurrence matrix and relative entropy-based symmetrical co-occurrence matrix method, the proposed method can obtain more complete segmentation results, especially for small-size object extraction. The peak signal to noise ratio probability also shows the better segmentation performance of our proposed method.