Detecting malicious morphological alterations of ECG signals in body sensor networks

Hang Cai, K. Venkatasubramanian
{"title":"Detecting malicious morphological alterations of ECG signals in body sensor networks","authors":"Hang Cai, K. Venkatasubramanian","doi":"10.1145/2737095.2742930","DOIUrl":null,"url":null,"abstract":"Body Sensor Network (BSN) -- a network of body-worn wireless health monitoring sensors -- have a tremendous potential to remove the space and time restrictions on health management. Given the importance of the data BSNs collect for improved health outcomes, securing the data from unauthorized tampering is essential. A compromised (or externally influenced) sensor in a BSN may generate erroneous patient data leading to, among other things, wrong diagnosis and treatment. In this paper, we present a novel approach to address the problem of detecting maliciously induced morphological alterations in the ECG signal (i.e., inducing changes to its shape). Our approach works by correlating the ECG signals with synchronously measured arterial blood pressure (ABP) signal measured using a distinct (and un-compromised) sensor. Initial analysis of our system demonstrates promising results, with 99.75% accuracy in detecting ECG signal morphological alterations for healthy patients with normal sinus rhythms.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2742930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Body Sensor Network (BSN) -- a network of body-worn wireless health monitoring sensors -- have a tremendous potential to remove the space and time restrictions on health management. Given the importance of the data BSNs collect for improved health outcomes, securing the data from unauthorized tampering is essential. A compromised (or externally influenced) sensor in a BSN may generate erroneous patient data leading to, among other things, wrong diagnosis and treatment. In this paper, we present a novel approach to address the problem of detecting maliciously induced morphological alterations in the ECG signal (i.e., inducing changes to its shape). Our approach works by correlating the ECG signals with synchronously measured arterial blood pressure (ABP) signal measured using a distinct (and un-compromised) sensor. Initial analysis of our system demonstrates promising results, with 99.75% accuracy in detecting ECG signal morphological alterations for healthy patients with normal sinus rhythms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在人体传感器网络中检测心电信号的恶意形态改变
身体传感器网络(BSN)是一种穿戴式无线健康监测传感器网络,在消除健康管理的空间和时间限制方面具有巨大的潜力。考虑到bsn收集的数据对于改善健康结果的重要性,保护数据免受未经授权的篡改至关重要。BSN中受损(或受外部影响)的传感器可能产生错误的患者数据,导致错误的诊断和治疗。在本文中,我们提出了一种新的方法来解决检测心电信号中恶意诱导的形态学改变(即诱导其形状变化)的问题。我们的方法通过将ECG信号与使用不同(且未受损)传感器测量的同步测量的动脉血压(ABP)信号相关联来工作。我们的系统的初步分析显示了令人满意的结果,在检测正常窦性节律的健康患者的ECG信号形态学改变方面准确率为99.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing multi-hop calibration errors in large-scale mobile sensor networks FuzzyCAT: a novel procedure for refining the F-transform based sensor data compression CleanHands: an integrated monitoring system for control of hospital acquired infections A low-cost sensor platform for large-scale wideband spectrum monitoring Detecting malicious morphological alterations of ECG signals in body sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1