{"title":"Proxy Benchmarks for Emerging Big-Data Workloads","authors":"Reena Panda, L. John","doi":"10.1109/PACT.2017.44","DOIUrl":null,"url":null,"abstract":"Early design-space evaluation of computer-systems is usually performed using performance models such as detailed simulators, RTL-based models etc. Unfortunately, it is very challenging (often impossible) to run many emerging applications on detailed performance models owing to their complex application software-stacks, significantly long run times, system dependencies and the limited speed/potential of early performance models. To overcome these challenges in benchmarking complex, long-running database applications, we propose a fast and efficient proxy generation methodology, PerfProx that can generate miniature proxy benchmarks, which are representative of the performance of real-world database applications and yet, converge to results quickly and do not need any complex software-stack support. Past research on proxy generation utilizes detailed micro-architecture independent metrics derived from detailed functional simulators, which are often difficult to generate for many emerging applications. PerfProx enables fast and efficient proxy generation using performance metrics derived primarily from hardware performance counters. We evaluate the proposed proxy generation approach on three modern, real-world SQL and NoSQL databases, Cassandra, MongoDB and MySQL running both the data-serving and data-analytics class of applications on different hardware platforms and cache/TLB configurations. The proxy benchmarks mimic the performance (IPC) of the original database applications with ∼94.2% (avg) accuracy. We further demonstrate that the proxies mimic original application performance across several other key metrics, while significantly reducing the instruction counts.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Early design-space evaluation of computer-systems is usually performed using performance models such as detailed simulators, RTL-based models etc. Unfortunately, it is very challenging (often impossible) to run many emerging applications on detailed performance models owing to their complex application software-stacks, significantly long run times, system dependencies and the limited speed/potential of early performance models. To overcome these challenges in benchmarking complex, long-running database applications, we propose a fast and efficient proxy generation methodology, PerfProx that can generate miniature proxy benchmarks, which are representative of the performance of real-world database applications and yet, converge to results quickly and do not need any complex software-stack support. Past research on proxy generation utilizes detailed micro-architecture independent metrics derived from detailed functional simulators, which are often difficult to generate for many emerging applications. PerfProx enables fast and efficient proxy generation using performance metrics derived primarily from hardware performance counters. We evaluate the proposed proxy generation approach on three modern, real-world SQL and NoSQL databases, Cassandra, MongoDB and MySQL running both the data-serving and data-analytics class of applications on different hardware platforms and cache/TLB configurations. The proxy benchmarks mimic the performance (IPC) of the original database applications with ∼94.2% (avg) accuracy. We further demonstrate that the proxies mimic original application performance across several other key metrics, while significantly reducing the instruction counts.