DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing

Xianwei Zhang, Youtao Zhang, B. Childers, Jun Yang
{"title":"DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing","authors":"Xianwei Zhang, Youtao Zhang, B. Childers, Jun Yang","doi":"10.1109/PACT.2017.34","DOIUrl":null,"url":null,"abstract":"Recent studies showed that DRAM restore time degrades as technology scales, which imposes large performance and energy overheads. This problem, prolonged restore time (PRT), has been identified by the DRAM industry as one of three major scaling challenges.This paper proposes DrMP, a novel fine-grained precision-aware DRAM restore scheduling approach, to mitigate PRT. The approach exploits process variations (PVs) within and across DRAM rows to save data with mixed precision. The paper describes three variants of the approach: DrMP-A, DrMP-P, and DrMP-U. DrMP-A supports approximate computing by mapping important data bits to fast row segments to reduce restore time for improved performance at a low application error rate. DrMP-P pairs memory rows together to reduce the average restore time for precise computing. DrMP-U combines DrMP-A and DrMP-P to better trade performance, energy consumption, and computation precision. Our experimental results show that, on average, DrMP achieves 20% performance improvement and 15% energy reduction over a precision-oblivious baseline. Further, DrMP achieves an error rate less than 1% at the application level for a suite of benchmarks, including applications that exhibit unacceptable error rates under simple approximation that does not differentiate the importance of different bits.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Recent studies showed that DRAM restore time degrades as technology scales, which imposes large performance and energy overheads. This problem, prolonged restore time (PRT), has been identified by the DRAM industry as one of three major scaling challenges.This paper proposes DrMP, a novel fine-grained precision-aware DRAM restore scheduling approach, to mitigate PRT. The approach exploits process variations (PVs) within and across DRAM rows to save data with mixed precision. The paper describes three variants of the approach: DrMP-A, DrMP-P, and DrMP-U. DrMP-A supports approximate computing by mapping important data bits to fast row segments to reduce restore time for improved performance at a low application error rate. DrMP-P pairs memory rows together to reduce the average restore time for precise computing. DrMP-U combines DrMP-A and DrMP-P to better trade performance, energy consumption, and computation precision. Our experimental results show that, on average, DrMP achieves 20% performance improvement and 15% energy reduction over a precision-oblivious baseline. Further, DrMP achieves an error rate less than 1% at the application level for a suite of benchmarks, including applications that exhibit unacceptable error rates under simple approximation that does not differentiate the importance of different bits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能近似和精确计算的混合精确感知DRAM
最近的研究表明,随着技术的扩展,DRAM恢复时间会降低,这会带来很大的性能和能源开销。恢复时间过长(PRT)是DRAM行业面临的三大扩展挑战之一。本文提出了一种新的细粒度精确感知DRAM恢复调度方法DrMP来缓解PRT。该方法利用DRAM行内和行间的过程变化(pv)来以混合精度保存数据。本文描述了该方法的三种变体:DrMP-A、DrMP-P和DrMP-U。DrMP-A通过将重要数据位映射到快速行段来支持近似计算,以减少恢复时间,从而在低应用程序错误率下提高性能。DrMP-P将内存行配对在一起,以减少精确计算的平均恢复时间。DrMP-U结合了DrMP-A和DrMP-P,以提高交易性能、能耗和计算精度。我们的实验结果表明,平均而言,在精度无关的基线上,DrMP实现了20%的性能提升和15%的能耗降低。此外,对于一组基准测试,DrMP在应用程序级别实现了低于1%的错误率,包括在简单近似下表现出不可接受的错误率的应用程序,这种近似不区分不同位的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1