Landmine Detection and Classification Using MLP

Roger Achkar, M. Owayjan, Carlo Mrad
{"title":"Landmine Detection and Classification Using MLP","authors":"Roger Achkar, M. Owayjan, Carlo Mrad","doi":"10.1109/CIMSIM.2011.10","DOIUrl":null,"url":null,"abstract":"This paper expounds on the design and the implementation of the intelligence (vision and brain) of an autonomous robot for landmines localization, specifically anti-tank mines, cluster bombs, or unexploded ordnance. The landmine sweeping technique under study utilizes state-of-the-art techniques in digital image processing for pre-processing captured images of the area being scanned. After enhancing the scanned images, data is fed into a processing unit that implements the Artificial Neural Network (ANN) in order to classify the landmines' make and model. The Back-Propagation algorithm is used for teaching the network. The system proved to be able to identify and classify different types of landmines under various conditions with a success rate of up to 90%. Various conditions include different viewpoints of the landmine such as having a rotated landmine, or a partially covered landmine.","PeriodicalId":125671,"journal":{"name":"2011 Third International Conference on Computational Intelligence, Modelling & Simulation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Conference on Computational Intelligence, Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper expounds on the design and the implementation of the intelligence (vision and brain) of an autonomous robot for landmines localization, specifically anti-tank mines, cluster bombs, or unexploded ordnance. The landmine sweeping technique under study utilizes state-of-the-art techniques in digital image processing for pre-processing captured images of the area being scanned. After enhancing the scanned images, data is fed into a processing unit that implements the Artificial Neural Network (ANN) in order to classify the landmines' make and model. The Back-Propagation algorithm is used for teaching the network. The system proved to be able to identify and classify different types of landmines under various conditions with a success rate of up to 90%. Various conditions include different viewpoints of the landmine such as having a rotated landmine, or a partially covered landmine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MLP的地雷探测与分类
本文阐述了一种用于地雷定位的自主机器人的智能(视觉和大脑)的设计和实现,特别是反坦克地雷,集束炸弹或未爆弹药。正在研究的扫雷技术利用数字图像处理方面最先进的技术,对所扫描地区所捕获的图像进行预处理。在对扫描图像进行增强后,将数据输入到一个实现人工神经网络(ANN)的处理单元,以对地雷的型号和型号进行分类。反向传播算法用于训练网络。该系统证明能够在各种条件下识别和分类不同类型的地雷,成功率高达90%。各种情况包括从不同角度观察地雷,例如旋转地雷或部分被覆盖的地雷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of Coupling Power Parameters of 1X3 Directional Fused Fiber Couplers Landmine Detection and Classification Using MLP Effects of Packet Size on AODV Routing Protocol Implementation in Homogeneous and Heterogeneous MANET SOCCP: Self Organize Coverage and Connectivity Protocol Design and Development of Smart Gripper with Vision Sensor for Industrial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1