Optimizing the PCIT algorithm on stampede's Xeon and Xeon Phi processors for faster discovery of biological networks

L. Koesterke, K. Milfeld, M. Vaughn, D. Stanzione, J. Koltes, N. Weeks, J. Reecy
{"title":"Optimizing the PCIT algorithm on stampede's Xeon and Xeon Phi processors for faster discovery of biological networks","authors":"L. Koesterke, K. Milfeld, M. Vaughn, D. Stanzione, J. Koltes, N. Weeks, J. Reecy","doi":"10.1145/2484762.2484794","DOIUrl":null,"url":null,"abstract":"The PCIT method is an important technique for detecting interactions between networks. The PCIT algorithm has been used in the biological context to infer complex regulatory mechanisms and interactions in genetic networks, in genome wide association studies, and in other similar problems. In this work, the PCIT algorithm is re-implemented with exemplary parallel, vector, I/O, memory and instruction optimizations for today's multi- and many-core architectures. The evolution and performance of the new code targets the processor architectures of the Stampede supercomputer, but will also benefit other architectures. The Stampede system consists of an Intel Xeon E5 processor base system with an innovative component comprised of Intel Xeon Phi Coprocessors. Optimized results and an analysis are presented for both the Xeon and the Xeon Phi.","PeriodicalId":426819,"journal":{"name":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484762.2484794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The PCIT method is an important technique for detecting interactions between networks. The PCIT algorithm has been used in the biological context to infer complex regulatory mechanisms and interactions in genetic networks, in genome wide association studies, and in other similar problems. In this work, the PCIT algorithm is re-implemented with exemplary parallel, vector, I/O, memory and instruction optimizations for today's multi- and many-core architectures. The evolution and performance of the new code targets the processor architectures of the Stampede supercomputer, but will also benefit other architectures. The Stampede system consists of an Intel Xeon E5 processor base system with an innovative component comprised of Intel Xeon Phi Coprocessors. Optimized results and an analysis are presented for both the Xeon and the Xeon Phi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在stampede的Xeon和Xeon Phi处理器上优化PCIT算法,以更快地发现生物网络
PCIT方法是检测网络间相互作用的重要技术。PCIT算法已被用于生物学领域,以推断遗传网络、全基因组关联研究和其他类似问题中的复杂调控机制和相互作用。在这项工作中,PCIT算法重新实现了并行,矢量,I/O,内存和指令优化,适用于当今的多核和多核架构。新代码的改进和性能针对Stampede超级计算机的处理器体系结构,但也将使其他体系结构受益。Stampede系统由英特尔至强E5处理器基础系统和由英特尔至强Phi协处理器组成的创新组件组成。给出了Xeon和Xeon Phi处理器的优化结果和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing utilization across XSEDE platforms Adaptive latency-aware parallel resource mapping: task graph scheduling onto heterogeneous network topology Optimizing the PCIT algorithm on stampede's Xeon and Xeon Phi processors for faster discovery of biological networks Training, education, and outreach: raising the bar Preliminary experiences with the uintah framework on Intel Xeon Phi and stampede
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1