On Infectious Intestinal Disease Surveillance using Social Media Content

Bin Zou, Vasileios Lampos, R. Gorton, I. Cox
{"title":"On Infectious Intestinal Disease Surveillance using Social Media Content","authors":"Bin Zou, Vasileios Lampos, R. Gorton, I. Cox","doi":"10.1145/2896338.2896372","DOIUrl":null,"url":null,"abstract":"This paper investigates whether infectious intestinal diseases (IIDs) can be detected and quantified using social media content. Experiments are conducted on user-generated data from the microblogging service, Twitter. Evaluation is based on the comparison with the number of IID cases reported by traditional health surveillance methods. We employ a deep learning approach for creating a topical vocabulary, and then apply a regularised linear (Elastic Net) as well as a nonlinear (Gaussian Process) regression function for inference. We show that like previous text regression tasks, the nonlinear approach performs better. In general, our experimental results, both in terms of predictive performance and semantic interpretation, indicate that Twitter data contain a signal that could be strong enough to complement conventional methods for IID surveillance.","PeriodicalId":146447,"journal":{"name":"Proceedings of the 6th International Conference on Digital Health Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Health Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2896338.2896372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

This paper investigates whether infectious intestinal diseases (IIDs) can be detected and quantified using social media content. Experiments are conducted on user-generated data from the microblogging service, Twitter. Evaluation is based on the comparison with the number of IID cases reported by traditional health surveillance methods. We employ a deep learning approach for creating a topical vocabulary, and then apply a regularised linear (Elastic Net) as well as a nonlinear (Gaussian Process) regression function for inference. We show that like previous text regression tasks, the nonlinear approach performs better. In general, our experimental results, both in terms of predictive performance and semantic interpretation, indicate that Twitter data contain a signal that could be strong enough to complement conventional methods for IID surveillance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用社交媒体内容监测感染性肠道疾病
本文研究了感染性肠道疾病(IIDs)是否可以使用社交媒体内容进行检测和量化。实验是在微博服务Twitter的用户生成数据上进行的。评估的基础是与传统卫生监测方法报告的传染病病例数进行比较。我们采用深度学习方法创建主题词汇,然后应用正则化线性(Elastic Net)和非线性(高斯过程)回归函数进行推理。我们表明,像以前的文本回归任务一样,非线性方法执行得更好。总的来说,我们的实验结果,无论是在预测性能方面还是在语义解释方面,都表明Twitter数据包含一个足够强的信号,可以补充传统的IID监测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Bugs and Drugs Education for Children Through Mobile Games On Infectious Intestinal Disease Surveillance using Social Media Content Extracting Signals from Social Media for Chronic Disease Surveillance Emotional Virtual Agent to Improve Ageing in Place with Technology VAC Medi+board: Analysing Vaccine Rumours in News and Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1