Weighted matrix distance metric for face images classification

C. Rouabhia, Kheira Hamdaoui, H. Tebbikh
{"title":"Weighted matrix distance metric for face images classification","authors":"C. Rouabhia, Kheira Hamdaoui, H. Tebbikh","doi":"10.1109/ICMWI.2010.5648020","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel weighted distance metric based on 2D matrices rather than 1D vectors and the eigenvalues for face images classification and recognition. This distance is measured between two feature matrices obtained by two-dimensional principal component analysis (2DPCA) and two-dimensional linear discriminant analysis (2DLDA). The weights are the inverse of the eigenvalues of the total scatter matrix of face matrices sorted in decreasing order and the classification strategy adopted is the nearest neighbour algorithm. To test and evaluate the efficiency of the proposed distance metric, experiments were carried out using the international ORL face database. The experimental results show the high performance of the weighted matrix distance metric over the Yang and the Frobenius distances.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5648020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel weighted distance metric based on 2D matrices rather than 1D vectors and the eigenvalues for face images classification and recognition. This distance is measured between two feature matrices obtained by two-dimensional principal component analysis (2DPCA) and two-dimensional linear discriminant analysis (2DLDA). The weights are the inverse of the eigenvalues of the total scatter matrix of face matrices sorted in decreasing order and the classification strategy adopted is the nearest neighbour algorithm. To test and evaluate the efficiency of the proposed distance metric, experiments were carried out using the international ORL face database. The experimental results show the high performance of the weighted matrix distance metric over the Yang and the Frobenius distances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权矩阵距离度量的人脸图像分类
本文提出了一种新的基于二维矩阵而非一维向量和特征值的加权距离度量,用于人脸图像的分类和识别。该距离是通过二维主成分分析(2DPCA)和二维线性判别分析(2DLDA)获得的两个特征矩阵之间的距离来测量的。权重为人脸矩阵总散点矩阵特征值的逆,分类策略为最近邻算法。为了测试和评估所提出的距离度量的有效性,使用国际ORL人脸数据库进行了实验。实验结果表明,加权矩阵距离度量在Yang距离和Frobenius距离上具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Disparity map estimation with neural network Weighted matrix distance metric for face images classification Exploring semantic roles of Web interface components Clustering approach for false alerts reducing in behavioral based intrusion detection systems Towards re-engineering Web applications into Semantic Web Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1