Hydrogen Embrittlement of Aircraft Components

Jivan B. Shah
{"title":"Hydrogen Embrittlement of Aircraft Components","authors":"Jivan B. Shah","doi":"10.31399/asm.fach.aero.c9001746","DOIUrl":null,"url":null,"abstract":"\n Brittle intergranular fracture, typical of a hydrogen-induced delayed failure, caused the failure of an AISI 4340 Cr-Mo-Ni landing gear beam. Corrosion resulting from protective coating damage released nascent hydrogen, which diffused into the steel under the influence of sustained tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure mechanism. As for the factors involved, cadmium plating, acid pickling, and steelmaking processes introduce hydrogen on part surfaces. As a second contributing factor, both bolts were 10 Rc points higher in hardness than specified (25 Rc), lessening ductility and notch toughness. A third factor was inadequate procedure, which resulted in bending moments being applied to the bolt threads.","PeriodicalId":326464,"journal":{"name":"ASM Failure Analysis Case Histories: Air and Spacecraft","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Air and Spacecraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.aero.c9001746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brittle intergranular fracture, typical of a hydrogen-induced delayed failure, caused the failure of an AISI 4340 Cr-Mo-Ni landing gear beam. Corrosion resulting from protective coating damage released nascent hydrogen, which diffused into the steel under the influence of sustained tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure mechanism. As for the factors involved, cadmium plating, acid pickling, and steelmaking processes introduce hydrogen on part surfaces. As a second contributing factor, both bolts were 10 Rc points higher in hardness than specified (25 Rc), lessening ductility and notch toughness. A third factor was inadequate procedure, which resulted in bending moments being applied to the bolt threads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞机部件的氢脆
AISI 4340 Cr-Mo-Ni起落架梁的脆性晶间断裂是典型的氢致延迟失效。由于保护涂层的破坏而产生的腐蚀释放出新生的氢,在持续拉应力的影响下扩散到钢中。第二个因素是一簇非金属夹杂物,这些夹杂物有“支流”裂缝。此外,吊起轻型飞机(约7000磅)时,螺栓也会断裂。螺栓断裂为脆性晶间断裂,很可能是由于氢诱导的延迟破坏机制。至于所涉及的因素,镀镉、酸洗和炼钢过程会在零件表面引入氢。第二个影响因素是,两个螺栓的硬度都比规定的(25 Rc)高10 Rc点,降低了延展性和缺口韧性。第三个因素是工艺不当,导致螺栓螺纹产生弯矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Premature Failure of a Turbine Blade by Thermal Fatigue Fracture Stress-Corrosion Cracking of a T-Bolt Failure of an External Tank Pressure/Vent Valve Corrosion Fatigue of Aircraft Nose Wheels Failure of a Bearing for a Jet Engine Because of Misalignment Between the Bearing and a Shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1