Application of Domain Adaptation Approach for Weather Data Mining

Yang Wang, Yuanzhe Shi
{"title":"Application of Domain Adaptation Approach for Weather Data Mining","authors":"Yang Wang, Yuanzhe Shi","doi":"10.1145/3268866.3268879","DOIUrl":null,"url":null,"abstract":"The fast increase in the availability of weather data from various sensors and weather stations allows weather data mining to achieve much higher accuracy over time, serving for important economic and socioeconomic purposes. However, the availability and sparsity of weather data differs drastically for geologically separated locations and there exists wide across domain differences for different sources, resulting in various accuracy in predicting the weather for target locations with different weather patterns. This paper applies domain adaptation approach for weather classification, where a system is trained from one source domain but deployed on another target domain. This methodology outperforms other two alternative methods, showing lower misclassification rate than using only target domain or naïve combination of both target and source domain ignoring cross-domain differences. This work provides a framework for future weather data mining and encourages the domain adaptation approach in other applications in data mining with wide cross-domain differences in general.","PeriodicalId":285628,"journal":{"name":"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3268866.3268879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The fast increase in the availability of weather data from various sensors and weather stations allows weather data mining to achieve much higher accuracy over time, serving for important economic and socioeconomic purposes. However, the availability and sparsity of weather data differs drastically for geologically separated locations and there exists wide across domain differences for different sources, resulting in various accuracy in predicting the weather for target locations with different weather patterns. This paper applies domain adaptation approach for weather classification, where a system is trained from one source domain but deployed on another target domain. This methodology outperforms other two alternative methods, showing lower misclassification rate than using only target domain or naïve combination of both target and source domain ignoring cross-domain differences. This work provides a framework for future weather data mining and encourages the domain adaptation approach in other applications in data mining with wide cross-domain differences in general.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领域自适应方法在天气数据挖掘中的应用
来自各种传感器和气象站的天气数据的可用性迅速增加,使得天气数据挖掘随着时间的推移可以达到更高的精度,为重要的经济和社会经济目的服务。然而,不同地理位置的天气数据的可用性和稀疏性差异很大,并且不同来源的数据存在较大的跨域差异,导致不同天气模式的目标位置的天气预测精度不同。本文将领域适应方法应用于天气分类,其中系统从一个源领域训练,但部署在另一个目标领域。该方法优于其他两种替代方法,与仅使用目标域或忽略跨域差异的目标域和源域的naïve组合相比,显示出更低的误分类率。这项工作为未来的天气数据挖掘提供了一个框架,并鼓励在数据挖掘的其他应用中采用领域适应方法,这些应用通常具有广泛的跨领域差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Indoor Robot Navigation via Siamese Deep Convolutional Neural Network Application of Domain Adaptation Approach for Weather Data Mining Discriminative Co-Occurrence of Concept Features for Action Recognition Combinatorial Optimization Approach for Arabic Word Recognition Categorization of Patient Disease into ICD-10 with NLP and SVM for Chinese Electronic Health Record Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1