Chunsheng Yang, S. Létourneau, Yubin Yang, Jie Liu
{"title":"Data mining based fault isolation with FMEA rank: A case study of APU fault identification","authors":"Chunsheng Yang, S. Létourneau, Yubin Yang, Jie Liu","doi":"10.1109/ICPHM.2013.6621454","DOIUrl":null,"url":null,"abstract":"FMEA (Failure Mode and Effects Analysis), which was developed to enhance the reliability of complex systems, is a standard method to characterize and document product and process problems and a systematic method for fault identification/isolation in maintenance industry. Fault identification for a given failure effect or mode is a reactive process. Usually, a failure has occurred and it needs to identify which component is the root cause or to isolate the fault to a specific contributing component. Traditional method is to conduct TSM (Trouble Shooting Manuals)-based fault isolation, which is complicated, expensive, and time-consuming. To efficiently perform fault isolation, this paper proposed data mining-based framework for fault isolation by using FMEA information to rank data-driven models. In this paper, we present the proposed framework along with a case study for APU fault identification.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
FMEA (Failure Mode and Effects Analysis), which was developed to enhance the reliability of complex systems, is a standard method to characterize and document product and process problems and a systematic method for fault identification/isolation in maintenance industry. Fault identification for a given failure effect or mode is a reactive process. Usually, a failure has occurred and it needs to identify which component is the root cause or to isolate the fault to a specific contributing component. Traditional method is to conduct TSM (Trouble Shooting Manuals)-based fault isolation, which is complicated, expensive, and time-consuming. To efficiently perform fault isolation, this paper proposed data mining-based framework for fault isolation by using FMEA information to rank data-driven models. In this paper, we present the proposed framework along with a case study for APU fault identification.