Speaker identification using convolutional neural network for clean and noisy speech samples

Ali Muayad Jalil, F. S. Hasan, H. Alabbasi
{"title":"Speaker identification using convolutional neural network for clean and noisy speech samples","authors":"Ali Muayad Jalil, F. S. Hasan, H. Alabbasi","doi":"10.1109/CAS47993.2019.9075461","DOIUrl":null,"url":null,"abstract":"Conventional speaker identification systems require features that are carefully designed to achieve high identification accuracy rates. With deep learning, these features are learned rather than specifically designed. The improvements of deep neural networks algorithms and techniques lead to an increase in using deep neural networks for speaker identification systems in favour of the conventional systems. In this paper, we use a convolutional neural network with Mel-spectrogram as an input for the identification purpose. The experiments are done on TIMIT dataset to evaluate the proposed CNN architecture and to compare with state-of-the-art systems for clean and noisy speech samples.","PeriodicalId":202291,"journal":{"name":"2019 First International Conference of Computer and Applied Sciences (CAS)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Computer and Applied Sciences (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAS47993.2019.9075461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Conventional speaker identification systems require features that are carefully designed to achieve high identification accuracy rates. With deep learning, these features are learned rather than specifically designed. The improvements of deep neural networks algorithms and techniques lead to an increase in using deep neural networks for speaker identification systems in favour of the conventional systems. In this paper, we use a convolutional neural network with Mel-spectrogram as an input for the identification purpose. The experiments are done on TIMIT dataset to evaluate the proposed CNN architecture and to compare with state-of-the-art systems for clean and noisy speech samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络对干净和有噪声的语音样本进行说话人识别
传统的说话人识别系统需要经过精心设计的功能,以达到较高的识别准确率。通过深度学习,这些特征是学习而不是专门设计的。随着深度神经网络算法和技术的进步,越来越多的人将深度神经网络用于说话人识别系统,而不是传统的系统。在本文中,我们使用带有mel谱图的卷积神经网络作为识别目的的输入。实验在TIMIT数据集上进行,以评估所提出的CNN架构,并与最先进的系统进行干净和有噪声语音样本的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Cancer Detection Based on ABCD Rule Three Prior and Double Prior Selection to Comparison Estimate Parameter Rayleigh Distribution under Data Type II Censoring Speaker identification using convolutional neural network for clean and noisy speech samples Surface Patch Detection of 3D Point Cloud Using Local Shape Descriptor The trade-off between security and quality using permutation and substitution techniques in speech scrambling system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1