A Neuromorphic Algorithm for Radiation Anomaly Detection

James M. Ghawaly, Aaron R. Young, Daniel E. Archer, Nick Prins, Brett Witherspoon, Catherine D. Schuman
{"title":"A Neuromorphic Algorithm for Radiation Anomaly Detection","authors":"James M. Ghawaly, Aaron R. Young, Daniel E. Archer, Nick Prins, Brett Witherspoon, Catherine D. Schuman","doi":"10.1145/3546790.3546815","DOIUrl":null,"url":null,"abstract":"In this work, we present initial results on the development of a neuromorphic spiking neural network for performing gamma-ray radiation anomaly detection, the first known application of neuromorphic computing to be applied to the radiation detection domain. Neuromorphic computing seeks to enable future autonomous systems to obtain machine learning-level performance without the typical high power consumption needs. The detection of anomalous radioactive sources in an urban environment is challenging, largely due to the highly dynamic nature of background radiation. For this evaluation, the spiking neural network is trained and evaluated on the Urban Source Search challenge dataset, a synthetic dataset whose development was funded through the United States Department of Energy. The network’s weights and architecture are trained using an evolutionary optimization approach. A preliminary performance evaluation of the spiking neural network indicates significant improvements in source detection sensitivity when compared to an established gross count rate-based algorithm, while meeting ANSI standards for false alarm rate. The SNN achieved half the sensitivity of a different, more complex spectral analysis algorithm from literature, leaving room for future research and development.","PeriodicalId":104528,"journal":{"name":"Proceedings of the International Conference on Neuromorphic Systems 2022","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Neuromorphic Systems 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546790.3546815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we present initial results on the development of a neuromorphic spiking neural network for performing gamma-ray radiation anomaly detection, the first known application of neuromorphic computing to be applied to the radiation detection domain. Neuromorphic computing seeks to enable future autonomous systems to obtain machine learning-level performance without the typical high power consumption needs. The detection of anomalous radioactive sources in an urban environment is challenging, largely due to the highly dynamic nature of background radiation. For this evaluation, the spiking neural network is trained and evaluated on the Urban Source Search challenge dataset, a synthetic dataset whose development was funded through the United States Department of Energy. The network’s weights and architecture are trained using an evolutionary optimization approach. A preliminary performance evaluation of the spiking neural network indicates significant improvements in source detection sensitivity when compared to an established gross count rate-based algorithm, while meeting ANSI standards for false alarm rate. The SNN achieved half the sensitivity of a different, more complex spectral analysis algorithm from literature, leaving room for future research and development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种辐射异常检测的神经形态算法
在这项工作中,我们介绍了用于伽马射线辐射异常检测的神经形态尖峰神经网络的开发的初步结果,这是神经形态计算应用于辐射检测领域的第一个已知应用。神经形态计算旨在使未来的自主系统在没有典型的高功耗需求的情况下获得机器学习水平的性能。在城市环境中检测异常放射源是具有挑战性的,主要是由于背景辐射的高度动态性质。在这次评估中,在Urban Source Search挑战数据集上训练和评估了脉冲神经网络,这是一个由美国能源部资助开发的合成数据集。使用进化优化方法训练网络的权值和结构。对尖峰神经网络的初步性能评估表明,与已建立的基于总计数率的算法相比,该算法在源检测灵敏度方面有显著提高,同时满足误报警率的ANSI标准。SNN实现了文献中另一种更复杂的光谱分析算法的一半灵敏度,为未来的研究和发展留下了空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Supervised Graph Structure Learning on Neuromorphic Computers A Neuromorphic Algorithm for Radiation Anomaly Detection Optimizing Recurrent Spiking Neural Networks with Small Time Constants for Temporal Tasks LODeNNS: A Linearly-approximated and Optimized Dendrocentric Nearest Neighbor STDP Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1