Progresses in Link Prediction: A Survey

Jiahao Li, Linlan Liu, Jian Shu
{"title":"Progresses in Link Prediction: A Survey","authors":"Jiahao Li, Linlan Liu, Jian Shu","doi":"10.1145/3581807.3581903","DOIUrl":null,"url":null,"abstract":"Link prediction is a technique to forecast future new or missing relationships between entities based on the current dynamic network information. After a brief introduction of the standard problem and evaluation metrics of link prediction, this review will summarize representative progresses about matrix factorization, probabilistic models, network embedding, deep learning, and some others, mainly extracted from related publications in the last decade. Finally, this review will outline some long-standing challenges for future studies.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Link prediction is a technique to forecast future new or missing relationships between entities based on the current dynamic network information. After a brief introduction of the standard problem and evaluation metrics of link prediction, this review will summarize representative progresses about matrix factorization, probabilistic models, network embedding, deep learning, and some others, mainly extracted from related publications in the last decade. Finally, this review will outline some long-standing challenges for future studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链接预测研究进展综述
链路预测是一种基于当前动态网络信息预测实体之间未来新增或缺失关系的技术。在简要介绍了链接预测的标准问题和评价指标之后,本文将总结矩阵分解、概率模型、网络嵌入、深度学习等方面的代表性进展,主要摘自近十年来的相关出版物。最后,本文概述了未来研究的一些长期挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Channel Attention for Chinese Scene Text Recognition Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion Comparative Study on EEG Feature Recognition based on Deep Belief Network VA-TransUNet: A U-shaped Medical Image Segmentation Network with Visual Attention Traffic Flow Forecasting Research Based on Delay Reconstruction and GRU-SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1