Automating Big Data Analysis Based on Deep Learning Generation by Automatic Service Composition

Incheon Paik, T. Siriweera
{"title":"Automating Big Data Analysis Based on Deep Learning Generation by Automatic Service Composition","authors":"Incheon Paik, T. Siriweera","doi":"10.1109/DSAA.2019.00081","DOIUrl":null,"url":null,"abstract":"Automation of Big Data Analysis (BDA) procedure gives us a great profit in the era of Big Data and Artificial Intelligence. BDA procedure can be efficiently automated by the automatic service composition concept efficiently. Our previous work for Auto-BDA shows a great future prospect in reducing turnaround time for data analysis. Moreover, it requires consideration of the automation with a well-geared combination of the data preparation and the optimal model (deep learning) generation. This paper shows the construction of automating BDA and model generation (here deep learning) together with data preparation and parameter optimization.","PeriodicalId":416037,"journal":{"name":"2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2019.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automation of Big Data Analysis (BDA) procedure gives us a great profit in the era of Big Data and Artificial Intelligence. BDA procedure can be efficiently automated by the automatic service composition concept efficiently. Our previous work for Auto-BDA shows a great future prospect in reducing turnaround time for data analysis. Moreover, it requires consideration of the automation with a well-geared combination of the data preparation and the optimal model (deep learning) generation. This paper shows the construction of automating BDA and model generation (here deep learning) together with data preparation and parameter optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习生成的自动化服务组合大数据分析
在大数据和人工智能时代,大数据分析(BDA)过程的自动化给我们带来了巨大的利润。利用自动服务组合的概念,可以有效地实现BDA流程的自动化。我们之前为Auto-BDA所做的工作在减少数据分析的周转时间方面显示出了巨大的前景。此外,它需要考虑数据准备和最优模型(深度学习)生成的良好组合的自动化。本文展示了自动化BDA的构建和模型生成(这里是深度学习),以及数据准备和参数优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Rapid Prototyping Approach for High Performance Density-Based Clustering Automating Big Data Analysis Based on Deep Learning Generation by Automatic Service Composition Detecting Sensitive Content in Spoken Language Improving the Personalized Recommendation in the Cold-start Scenarios Colorwall: An Embedded Temporal Display of Bibliographic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1