C. A. Ferrara-Bello, J. O. Sandoval-Reyes, P. Vargas-Chable, M. Tecpoyotl-Torres, J. Varona
{"title":"Design and 3D printed implementation of a microgripper actuated by a piezoelectric stack","authors":"C. A. Ferrara-Bello, J. O. Sandoval-Reyes, P. Vargas-Chable, M. Tecpoyotl-Torres, J. Varona","doi":"10.1109/ICMEAE.2019.00019","DOIUrl":null,"url":null,"abstract":"This article presents the design and implementation of a microgripper device actuated by a piezoelectric stack. In order to reduce fabrication costs, conventional piezoelectric buzzers are used that are easily found in the market at very low cost. Polylactic Acid (PLA) was chosen as the structural material for the design of the mechanisms of the microgripper, the choice of this material considerably reduces the total implementation cost. The originality of this work resides in the material used and in the stacked piezoelectric actuator. The main contribution is the demonstration of a design methodology that implements prototype compliance mechanisms at millimeter scale for validation purposes before proceeding to the fabrication in micrometric scale. Even so, the system in mm scale can also be used for micromanipulation due to the range of its microgripper jaws’ aperture and its reliability. ANSYSTM was used as the software tool for simulation.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This article presents the design and implementation of a microgripper device actuated by a piezoelectric stack. In order to reduce fabrication costs, conventional piezoelectric buzzers are used that are easily found in the market at very low cost. Polylactic Acid (PLA) was chosen as the structural material for the design of the mechanisms of the microgripper, the choice of this material considerably reduces the total implementation cost. The originality of this work resides in the material used and in the stacked piezoelectric actuator. The main contribution is the demonstration of a design methodology that implements prototype compliance mechanisms at millimeter scale for validation purposes before proceeding to the fabrication in micrometric scale. Even so, the system in mm scale can also be used for micromanipulation due to the range of its microgripper jaws’ aperture and its reliability. ANSYSTM was used as the software tool for simulation.