Composite sketch recognition via deep network - a transfer learning approach

Paritosh Mittal, Mayank Vatsa, Richa Singh
{"title":"Composite sketch recognition via deep network - a transfer learning approach","authors":"Paritosh Mittal, Mayank Vatsa, Richa Singh","doi":"10.1109/ICB.2015.7139092","DOIUrl":null,"url":null,"abstract":"Sketch recognition is one of the integral components used by law enforcement agencies in solving crime. In recent past, software generated composite sketches are being preferred as they are more consistent and faster to construct than hand drawn sketches. Matching these composite sketches to face photographs is a complex task because the composite sketches are drawn based on the witness description and lack minute details which are present in photographs. This paper presents a novel algorithm for matching composite sketches with photographs using transfer learning with deep learning representation. In the proposed algorithm, first the deep learning architecture based facial representation is learned using large face database of photos and then the representation is updated using small problem-specific training database. Experiments are performed on the extended PRIP database and it is observed that the proposed algorithm outperforms recently proposed approach and a commercial face recognition system.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Sketch recognition is one of the integral components used by law enforcement agencies in solving crime. In recent past, software generated composite sketches are being preferred as they are more consistent and faster to construct than hand drawn sketches. Matching these composite sketches to face photographs is a complex task because the composite sketches are drawn based on the witness description and lack minute details which are present in photographs. This paper presents a novel algorithm for matching composite sketches with photographs using transfer learning with deep learning representation. In the proposed algorithm, first the deep learning architecture based facial representation is learned using large face database of photos and then the representation is updated using small problem-specific training database. Experiments are performed on the extended PRIP database and it is observed that the proposed algorithm outperforms recently proposed approach and a commercial face recognition system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度网络的复合草图识别-一种迁移学习方法
素描识别是执法机关破案工作中不可或缺的组成部分之一。在最近的过去,软件生成的合成草图是首选,因为它们比手绘草图更一致,更快地构建。将这些合成草图与人脸照片相匹配是一项复杂的任务,因为合成草图是根据证人的描述绘制的,缺乏照片中存在的微小细节。本文提出了一种基于深度学习表示的迁移学习的复合草图与照片匹配算法。在该算法中,首先使用大型照片人脸数据库学习基于深度学习架构的面部表征,然后使用小型特定问题训练数据库更新表征。在扩展的PRIP数据库上进行了实验,观察到所提出的算法优于最近提出的方法和商业人脸识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1