Lesion border detection in dermoscopy images using bilateral filter

A. Abbas, R. Logeswaran, Xiaoning Guo, W. Tan
{"title":"Lesion border detection in dermoscopy images using bilateral filter","authors":"A. Abbas, R. Logeswaran, Xiaoning Guo, W. Tan","doi":"10.1109/ICSIPA.2013.6708034","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient way to effectively segment malignant melanoma in color dermoscopy images. A combination of methods are used in the proposed technique, including smoothing filters, PSNR, Spline, edge detection, morphological operations and segmentation. The pre-processing step eliminates noise, smoothes the image and employs the spline function to improve edge detection, while morphological operations are used to segment the lesion from image. Manual boundary selection is used as benchmark to test the accuracy of the automatic boundary selection by the proposed algorithm. The evaluation results show that the proposed method (Bilt-Sp) is able to achieve a good accuracy of 96.26%, supporting the effectiveness of the proposed method in automatically detecting skin lesions.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes an efficient way to effectively segment malignant melanoma in color dermoscopy images. A combination of methods are used in the proposed technique, including smoothing filters, PSNR, Spline, edge detection, morphological operations and segmentation. The pre-processing step eliminates noise, smoothes the image and employs the spline function to improve edge detection, while morphological operations are used to segment the lesion from image. Manual boundary selection is used as benchmark to test the accuracy of the automatic boundary selection by the proposed algorithm. The evaluation results show that the proposed method (Bilt-Sp) is able to achieve a good accuracy of 96.26%, supporting the effectiveness of the proposed method in automatically detecting skin lesions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双侧滤波器在皮肤镜图像病灶边界检测中的应用
本文提出了一种有效分割彩色皮肤镜图像中恶性黑色素瘤的方法。在提出的技术中使用了多种方法,包括平滑滤波器、PSNR、样条、边缘检测、形态学操作和分割。预处理步骤消除噪声,平滑图像,利用样条函数改进边缘检测,形态学操作从图像中分割病灶。以人工边界选择为基准,测试了算法自动边界选择的准确性。评价结果表明,所提方法(Bilt-Sp)能够达到96.26%的良好准确率,支持了所提方法在皮肤病变自动检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
List of reviewers Multi-Level View Synthesis (MLVS) based on Depth Image Layer Separation (DILS) algorithm for multi-camera view system Mouth covered detection for yawn Depth Image Layers Separation (DILS) algorithm of image view synthesis based on stereo vision Accurate videogrammetric data for human limb movement research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1