Hilbert Huang transform based speech recognition

Vani H.Y, M. Anusuya
{"title":"Hilbert Huang transform based speech recognition","authors":"Vani H.Y, M. Anusuya","doi":"10.1109/CCIP.2016.7802858","DOIUrl":null,"url":null,"abstract":"In today's world, to make man-machine interaction more effective speech recognition plays an important role in speech processing. This paper presents the application of Hilbert-Huang transform (HHT), a mathematical tool applied for feature extraction phase of the speech signal processing. These features are modeled and evaluated using Vector Quantization(VQ) and Fuzzy C Means(FCM) techniques. The proposed system highlights the importance of Discrete Cosine Transformation(DCT) applied for Hilbert Huang Transform to extract the better speech signal parameters. The features obtained from this process has better recognition accuracies. It also demonstrates the efficiency of DCT with HHT for FCM clustering technique over the VQ technique. The performance of HHT- FCM is discussed with the termination criteria `ε' and fuzzifier `m' parameters of FCM.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In today's world, to make man-machine interaction more effective speech recognition plays an important role in speech processing. This paper presents the application of Hilbert-Huang transform (HHT), a mathematical tool applied for feature extraction phase of the speech signal processing. These features are modeled and evaluated using Vector Quantization(VQ) and Fuzzy C Means(FCM) techniques. The proposed system highlights the importance of Discrete Cosine Transformation(DCT) applied for Hilbert Huang Transform to extract the better speech signal parameters. The features obtained from this process has better recognition accuracies. It also demonstrates the efficiency of DCT with HHT for FCM clustering technique over the VQ technique. The performance of HHT- FCM is discussed with the termination criteria `ε' and fuzzifier `m' parameters of FCM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hilbert Huang变换的语音识别
在当今世界,为了使人机交互更加有效,语音识别在语音处理中起着重要的作用。本文介绍了Hilbert-Huang变换(HHT)这一数学工具在语音信号处理中特征提取阶段的应用。使用矢量量化(VQ)和模糊C均值(FCM)技术对这些特征进行建模和评估。该系统强调了将离散余弦变换(DCT)应用于希尔伯特黄变换中提取更好的语音信号参数的重要性。该方法得到的特征具有较好的识别精度。在FCM聚类技术中,与VQ技术相比,HHT DCT的效率更高。利用FCM的终止准则ε和模糊化参数m对HHT- FCM的性能进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hilbert Huang transform based speech recognition An Integrated curvature and Convex Hull based concave point detection in Histopathological images Study of Complex-valued Learning algorithms for Post-surgery survival prediction Optimized Radial Basis Function Neural Network model for wind power prediction Early detection of grapes diseases using machine learning and IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1