Finding Participants in a Chat: Authorship Attribution for Conversational Documents

Giacomo Inches, Morgan Harvey, F. Crestani
{"title":"Finding Participants in a Chat: Authorship Attribution for Conversational Documents","authors":"Giacomo Inches, Morgan Harvey, F. Crestani","doi":"10.1109/SOCIALCOM.2013.45","DOIUrl":null,"url":null,"abstract":"In this work we study the problem of Authorship Attribution for a novel set of documents, namely online chats. Although the problem of Authorship Attribution has been extensively investigated for different document types, from books to letters and from emails to blog posts, to the best of our knowledge this is the first study of Authorship Attribution for conversational documents (IRC chat logs) using statistical models. We experimentally demonstrate the unsuitability of the classical statistical models for conversational documents and propose a novel approach which is able to achieve a high accuracy rate (up to 95%) for hundreds of authors.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCIALCOM.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this work we study the problem of Authorship Attribution for a novel set of documents, namely online chats. Although the problem of Authorship Attribution has been extensively investigated for different document types, from books to letters and from emails to blog posts, to the best of our knowledge this is the first study of Authorship Attribution for conversational documents (IRC chat logs) using statistical models. We experimentally demonstrate the unsuitability of the classical statistical models for conversational documents and propose a novel approach which is able to achieve a high accuracy rate (up to 95%) for hundreds of authors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在聊天中寻找参与者:会话文档的作者归属
在这项工作中,我们研究了一组新颖文档的作者归属问题,即在线聊天。虽然作者归属的问题已经广泛地研究了不同类型的文档,从书籍到信件,从电子邮件到博客文章,据我们所知,这是第一次使用统计模型研究会话文档(IRC聊天日志)的作者归属。我们通过实验证明了经典统计模型对会话文档的不适用性,并提出了一种能够对数百位作者实现高准确率(高达95%)的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group Recommendation Algorithm with Collaborative Filtering Access Control Policy Extraction from Unconstrained Natural Language Text Stock Market Manipulation Using Cyberattacks Together with Misinformation Disseminated through Social Media Friendship Prediction on Social Network Users An Empirical Comparison of Graph Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1