Modelling user behaviour in the HIS-POMDP dialogue manager

Simon Keizer, Milica Gasic, François Mairesse, Blaise Thomson, Kai Yu, S. Young
{"title":"Modelling user behaviour in the HIS-POMDP dialogue manager","authors":"Simon Keizer, Milica Gasic, François Mairesse, Blaise Thomson, Kai Yu, S. Young","doi":"10.1109/SLT.2008.4777855","DOIUrl":null,"url":null,"abstract":"In the design of spoken dialogue systems that are robust to speech recognition and interpretation errors, modelling uncertainty is crucial. Recently, Partially Observable Markov Decision Processes (POMDPs) have been shown to provide a well-founded probabilistic framework for developing such systems. This paper reports on the design and evaluation of the user act model (UAM) as part of the Hidden Information State (HIS) POMDP dialogue manager. Within this system, the UAM represents the probability of a user producing a certain dialogue act, given the last system act and the dialogue state. Its design is domain-independent and founded on the notions of adjacency pairs and dialogue act preconditions. Experimental evaluation results on both simulated and real data show that the UAM plays a significant role in improving robustness, but it requires that the N-best lists of user act hypotheses and their confidence scores are of good quality.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In the design of spoken dialogue systems that are robust to speech recognition and interpretation errors, modelling uncertainty is crucial. Recently, Partially Observable Markov Decision Processes (POMDPs) have been shown to provide a well-founded probabilistic framework for developing such systems. This paper reports on the design and evaluation of the user act model (UAM) as part of the Hidden Information State (HIS) POMDP dialogue manager. Within this system, the UAM represents the probability of a user producing a certain dialogue act, given the last system act and the dialogue state. Its design is domain-independent and founded on the notions of adjacency pairs and dialogue act preconditions. Experimental evaluation results on both simulated and real data show that the UAM plays a significant role in improving robustness, but it requires that the N-best lists of user act hypotheses and their confidence scores are of good quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在HIS-POMDP对话管理器中对用户行为建模
在设计对语音识别和解释错误具有鲁棒性的语音对话系统时,建模不确定性是至关重要的。最近,部分可观察马尔可夫决策过程(pomdp)已被证明为开发此类系统提供了一个有充分根据的概率框架。本文报道了作为隐藏信息状态(HIS) POMDP对话管理器一部分的用户行为模型(UAM)的设计和评估。在这个系统中,给定最后一个系统行为和对话状态,UAM表示用户产生某个对话行为的概率。它的设计是独立于领域的,并建立在邻接对和对话行为前提的概念上。在模拟数据和真实数据上的实验评估结果表明,UAM在提高鲁棒性方面有显著作用,但它要求用户行为假设的n个最佳列表及其置信度得分具有良好的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1