A Multi-Agent Based Approach for Particle Swarm Optimization

R. Ahmad, Yung-Chuan Lee, S. Rahimi, B. Gupta
{"title":"A Multi-Agent Based Approach for Particle Swarm Optimization","authors":"R. Ahmad, Yung-Chuan Lee, S. Rahimi, B. Gupta","doi":"10.1109/KIMAS.2007.369820","DOIUrl":null,"url":null,"abstract":"We propose a new approach towards particle swarm optimization named agent-based PSO. The swarm is elevated to the status of a multi-agent system by giving the particles more autonomy, an asynchronous execution, and superior learning capabilities. The problem space is modeled as an environment which forms clusters of points that are known to be non-optimal and this transforms the environment into a more dynamic and informative resource","PeriodicalId":193808,"journal":{"name":"2007 International Conference on Integration of Knowledge Intensive Multi-Agent Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Integration of Knowledge Intensive Multi-Agent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KIMAS.2007.369820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We propose a new approach towards particle swarm optimization named agent-based PSO. The swarm is elevated to the status of a multi-agent system by giving the particles more autonomy, an asynchronous execution, and superior learning capabilities. The problem space is modeled as an environment which forms clusters of points that are known to be non-optimal and this transforms the environment into a more dynamic and informative resource
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多智能体的粒子群优化方法
提出了一种新的粒子群优化方法——基于agent的粒子群优化算法。通过赋予粒子更多的自主权、异步执行和卓越的学习能力,群体被提升到多智能体系统的地位。问题空间被建模为一个环境,它形成了已知非最优点的簇,这将环境转化为一个更动态和信息丰富的资源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Workflows and Their Discovery from Data Generalisation towards Combinatorial Productivity in Language Acquisition by Simple Recurrent Networks Robot Navigation in a 3D World Mediated by Sensor Networks Evaluating the Impact of Culture on Planning and Executing Multinational Joint Force Stability, Security, Transition and Reconstruction Operations A Multi-Agent Based Approach for Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1