FlinkMan: Anomaly Detection in Manufacturing Equipment with Apache Flink: Grand Challenge

Nicolo Rivetti, Yann Busnel, A. Gal
{"title":"FlinkMan: Anomaly Detection in Manufacturing Equipment with Apache Flink: Grand Challenge","authors":"Nicolo Rivetti, Yann Busnel, A. Gal","doi":"10.1145/3093742.3095099","DOIUrl":null,"url":null,"abstract":"We present a (soft) real-time event-based anomaly detection application for manufacturing equipment, built on top of the general purpose stream processing framework Apache Flink. The anomaly detection involves multiple CPUs and/or memory intensive tasks, such as clustering on large time-based window and parsing input data in RDF-format. The main goal is to reduce end-to-end latencies, while handling high input throughput and still provide exact results. Given a truly distributed setting, this challenge also entails careful task and/or data parallelization and balancing. We propose FlinkMan, a system that offers a generic and efficient solution, which maximizes the usage of available cores and balances the load among them. We illustrates the accuracy and efficiency of FlinkMan, over a 3-step pipelined data stream analysis, that includes clustering, modeling and querying.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3095099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a (soft) real-time event-based anomaly detection application for manufacturing equipment, built on top of the general purpose stream processing framework Apache Flink. The anomaly detection involves multiple CPUs and/or memory intensive tasks, such as clustering on large time-based window and parsing input data in RDF-format. The main goal is to reduce end-to-end latencies, while handling high input throughput and still provide exact results. Given a truly distributed setting, this challenge also entails careful task and/or data parallelization and balancing. We propose FlinkMan, a system that offers a generic and efficient solution, which maximizes the usage of available cores and balances the load among them. We illustrates the accuracy and efficiency of FlinkMan, over a 3-step pipelined data stream analysis, that includes clustering, modeling and querying.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FlinkMan:异常检测在制造设备与Apache Flink:大挑战
我们提出了一个(软)实时的基于事件的制造设备异常检测应用程序,建立在通用流处理框架Apache Flink之上。异常检测涉及多个cpu和/或内存密集型任务,例如在大的基于时间的窗口上聚类和以rdf格式解析输入数据。主要目标是减少端到端延迟,同时处理高输入吞吐量并仍然提供精确的结果。考虑到真正的分布式设置,这个挑战还需要仔细地进行任务和/或数据并行化和平衡。我们提出FlinkMan,一个提供通用和高效解决方案的系统,它最大限度地利用可用内核并平衡它们之间的负载。我们演示了FlinkMan的准确性和效率,通过3步流水数据流分析,包括聚类,建模和查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilateral Context Analysis based on the Novel Visualization of Network Tomography: Poster An Embedded DSL Framework for Distributed Embedded Systems: Doctoral Symposium FlinkMan: Anomaly Detection in Manufacturing Equipment with Apache Flink: Grand Challenge Using Rank Aggregation in Continuously Answering SPARQL Queries on Streaming and Quasi-static Linked Data FlowDB: Integrating Stream Processing and Consistent State Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1