Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization

G. Schuller
{"title":"Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization","authors":"G. Schuller","doi":"10.1109/SSP53291.2023.10208066","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the \"Random Directions\" probabilistic optimization method, demonstrating its efficacy in real-time, low-latency signal processing applications. Applied to an ultra-low delay, time-domain, multichannel source separation system, our \"Random Directions\" is compared with gradient-based method \"Trinicon\" and frequency domain methods like AuxIVA and FastMNMF. Results indicate that our approach often outperforms Trinicon in terms of the Signal to Interference Ratio (SIR) and presents the least non-linear distortions among all methods, as measured by the Signal to Artifacts Ratio (SAR). This study suggests that probabilistic optimization methods, traditionally perceived as slow, can indeed be effective for real-time applications.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the "Random Directions" probabilistic optimization method, demonstrating its efficacy in real-time, low-latency signal processing applications. Applied to an ultra-low delay, time-domain, multichannel source separation system, our "Random Directions" is compared with gradient-based method "Trinicon" and frequency domain methods like AuxIVA and FastMNMF. Results indicate that our approach often outperforms Trinicon in terms of the Signal to Interference Ratio (SIR) and presents the least non-linear distortions among all methods, as measured by the Signal to Artifacts Ratio (SAR). This study suggests that probabilistic optimization methods, traditionally perceived as slow, can indeed be effective for real-time applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低延迟音频源分离使用零阶优化
在本文中,我们介绍了“随机方向”概率优化方法,展示了它在实时、低延迟信号处理应用中的有效性。应用于超低延迟、时域、多通道源分离系统,我们的“随机方向”与基于梯度的方法“Trinicon”和频域方法如AuxIVA和FastMNMF进行了比较。结果表明,我们的方法在信号干扰比(SIR)方面通常优于Trinicon,并且在所有方法中表现出最小的非线性失真,如信号与伪像比(SAR)所测量的那样。这项研究表明,概率优化方法,传统上被认为是缓慢的,对于实时应用程序确实是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1