{"title":"Entangled State Preparation for Non-Binary Quantum Computing","authors":"Kaitlin N. Smith, M. Thornton","doi":"10.1109/ICRC.2019.8914717","DOIUrl":null,"url":null,"abstract":"A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A common model of quantum computing is the gate model with binary basis states. Here, we consider the gate model of quantum computing with a non-binary radix resulting in more than two basis states to represent a quantum digit, or qudit. Quantum entanglement is an important phenomenon that is a critical component of quantum computation and communications algorithms. The generation and use of entanglement among radix-2 qubits is well-known and used often in quantum computing algorithms. Quantum entanglement exists in higher-radix systems as well although little is written regarding the generation of higher-radix entangled states. We provide background describing the feasibility of multiple-valued logic quantum systems and describe a new systematic method for generating maximally entangled states in quantum systems of dimension greater than two. This method is implemented in a synthesis algorithm that is described. Experimental results are included that demonstrate the transformations needed to create specific forms of maximally entangled quantum states.