Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes

David Nolden, R. Schlüter, H. Ney
{"title":"Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes","authors":"David Nolden, R. Schlüter, H. Ney","doi":"10.1109/ASRU.2013.6707707","DOIUrl":null,"url":null,"abstract":"We show that most search errors can be identified by aligning the results of a symmetric forward and backward decoding pass. Based on this knowledge, we introduce an efficient high-level decoding architecture which yields virtually no search errors, and requires virtually no manual tuning. We perform an initial forward- and backward decoding with tight initial beams, then we identify search errors, and then we recursively increment the beam sizes and perform new forward and backward decodings for erroneous intervals until no more search errors are detected. Consequently, each utterance and even each single word is decoded with the smallest beam size required to decode it correctly. On all tested systems we achieve an error rate equal or very close to classical decoding with ideally tuned beam size, but unsupervisedly without specific tuning, and at around 2 times faster runtime. An additional speedup by factor 2 can be achieved by decoding the forward and backward pass in separate threads.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We show that most search errors can be identified by aligning the results of a symmetric forward and backward decoding pass. Based on this knowledge, we introduce an efficient high-level decoding architecture which yields virtually no search errors, and requires virtually no manual tuning. We perform an initial forward- and backward decoding with tight initial beams, then we identify search errors, and then we recursively increment the beam sizes and perform new forward and backward decodings for erroneous intervals until no more search errors are detected. Consequently, each utterance and even each single word is decoded with the smallest beam size required to decode it correctly. On all tested systems we achieve an error rate equal or very close to classical decoding with ideally tuned beam size, but unsupervisedly without specific tuning, and at around 2 times faster runtime. An additional speedup by factor 2 can be achieved by decoding the forward and backward pass in separate threads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增量向前和向后传递的高效几乎无错误的LVCSR解码
我们表明,大多数搜索错误可以通过对齐对称的前向和后向解码传递的结果来识别。基于这些知识,我们介绍了一种高效的高级解码架构,它几乎不会产生搜索错误,并且几乎不需要手动调优。我们使用紧凑的初始波束执行初始前向和后向解码,然后识别搜索错误,然后递归地增加波束大小,并针对错误间隔执行新的前向和后向解码,直到不再检测到搜索错误。因此,每个话语甚至每个单词都可以用正确解码所需的最小波束大小进行解码。在所有测试的系统中,我们实现了与经典解码相同或非常接近的错误率,具有理想的调谐波束大小,但没有特定的调谐,并且运行时间大约快了2倍。通过在单独的线程中解码向前和向后传递,可以实现2倍的额外加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning filter banks within a deep neural network framework Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes Porting concepts from DNNs back to GMMs Discriminative piecewise linear transformation based on deep learning for noise robust automatic speech recognition Acoustic modeling using transform-based phone-cluster adaptive training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1