Front End Defects on Deep Submicron Devices

S. P. Neo, S. K. Loh, Z.G. Song, S.P. Zhao
{"title":"Front End Defects on Deep Submicron Devices","authors":"S. P. Neo, S. K. Loh, Z.G. Song, S.P. Zhao","doi":"10.1109/SMELEC.2006.380724","DOIUrl":null,"url":null,"abstract":"Front end defects are usually more intricate as compared to back end defects, and as technology scale down into deep submicron regime, failure analysis of the front end defect is becoming even more challenging due to the increase in complexity of the process. In this paper, failure analysis on three types of front- end defect has been discussed. These defects are cobalt silicide at poly sidewall causing active to poly bridging, amorphous layer under contact and broken silicide on poly line, which were observed on 90 nm SOI wafers.","PeriodicalId":136703,"journal":{"name":"2006 IEEE International Conference on Semiconductor Electronics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2006.380724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Front end defects are usually more intricate as compared to back end defects, and as technology scale down into deep submicron regime, failure analysis of the front end defect is becoming even more challenging due to the increase in complexity of the process. In this paper, failure analysis on three types of front- end defect has been discussed. These defects are cobalt silicide at poly sidewall causing active to poly bridging, amorphous layer under contact and broken silicide on poly line, which were observed on 90 nm SOI wafers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深亚微米器件的前端缺陷
与后端缺陷相比,前端缺陷通常更复杂,并且随着技术规模缩小到深亚微米范围,由于过程复杂性的增加,前端缺陷的失效分析变得更加具有挑战性。本文对三种类型的前端缺陷进行了失效分析。在90 nm SOI晶圆上观察到的缺陷有:多壁硅化钴引起的主动桥接、接触下的非晶态层和多晶线上的硅化钴断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchrotron Radiation X-ray Diffraction and X-ray Photoelectron Spectroscopy Investigation on Si-based Structures for Sub-Micron Si-IC Applications Device Design Consideration for Nanoscale MOSFET Using Semiconductor TCAD Tools The Effect of Al and Pt/Ti Simultaneously Annealing on Electrical Characteristics of n-GaN Schottky Diode A Low-Cost CMOS Reconfigurable Receiver for WiMAX Applications Contact Hole Printing in Binary Mask by FLEX Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1