Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models

Isabeau Oliveri, Luca Ardito, Giuseppe Rizzo, M. Morisio
{"title":"Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models","authors":"Isabeau Oliveri, Luca Ardito, Giuseppe Rizzo, M. Morisio","doi":"10.4000/books.aaccademia.8768","DOIUrl":null,"url":null,"abstract":"English. In this paper we define the creativity embedding of a text based on four self-assessment creativity metrics, namely diversity, novelty, serendipity and magnitude, knowledge graphs, and neural networks. We use as basic unit the notion of triple (head, relation, tail). We investigate if additional information about creativity improves natural language processing tasks. In this work, we focus on triple plausibility task, exploiting BERT model and a WordNet11 dataset sample. Contrary to our hypothesis, we do not detect increase in the performance.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

English. In this paper we define the creativity embedding of a text based on four self-assessment creativity metrics, namely diversity, novelty, serendipity and magnitude, knowledge graphs, and neural networks. We use as basic unit the notion of triple (head, relation, tail). We investigate if additional information about creativity improves natural language processing tasks. In this work, we focus on triple plausibility task, exploiting BERT model and a WordNet11 dataset sample. Contrary to our hypothesis, we do not detect increase in the performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创造力嵌入:深度学习NLP模型中表征和分类似然三元组的向量
英语。本文基于多样性、新颖性、偶然性和重要性、知识图谱和神经网络这四个自我评估的创造力指标来定义文本的创造力嵌入。我们使用三元概念(头、关系、尾)作为基本单位。我们调查了关于创造力的额外信息是否能改善自然语言处理任务。在这项工作中,我们专注于三重合理性任务,利用BERT模型和WordNet11数据集样本。与我们的假设相反,我们没有发现性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case Study of Natural Gender Phenomena in Translation. A Comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish How Granularity of Orthography-Phonology Mappings Affect Reading Development: Evidence from a Computational Model of English Word Reading and Spelling Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models (Stem and Word) Predictability in Italian Verb Paradigms: An Entropy-Based Study Exploiting the New Resource LeFFI Dialog-based Help Desk through Automated Question Answering and Intent Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1